
WHITEPAPER

Code Coverage for
Safety-Critical Programs
Metrics & Considerations

This white paper summarizes the different implications
and considerations surrounding code coverage for safety-
critical programs, along with code coverage requirements
mandated by four major standards governing safety-
critical software in various industry contexts.

Qt Group Code Coverage for Safety-Critical Programs 2

Table of contents

1. Safety-Critical Systems as Software . 3

2. Code Coverage Requirements for Safety-Critical Programs 4

3. Coverage Metrics . 5

3.1 Function Coverage . 5
3.1.1 Definition . 5
3.1.2 Relevance for Safety Standards . 5

3.2 Line Coverage . 6
3.2.1 Definition . 6
3.2.2 Formatting Dependency . 6
3.2.3 Disguised Control Flow . 7
3.2.4 Relevance for Safety Standards . 7

3.3 Statement Coverage . 7
3.3.1 Definition . 7
3.3.2 Relevance for Safety Standards . 8

3.4 Decision (Branch) Coverage . 8
3.4.1 Definition . 8
3.4.2 Relevance for Safety Standards . 9

3.5 Modified Condition/Decision Coverage (MC/DC) Coverage 9
3.5.1 Definition . 9
3.5.2 Relevance for Safety Standards . 10

3.6 Multiple Condition Coverage (MCC) Coverage . 11
3.6.1 Definition . 11
3.6.2 Relevance for Safety Standards . 11

4. Conclusion . 12

Qt Group Code Coverage for Safety-Critical Programs 3

Safety-Critical Systems as Software
A system is “safety-critical” if a failure in its operation could result in human
fatality (or severe injury) or significant damage to property or the environment.
Such systems are becoming increasingly computer-based. (Take, for example, the
RATP’s ongoing development of fully autonomous subway lines in the Paris railway
network.) In this digital transformation, standards in the field of safety engineering
have emerged, which set requirements on the software development of software-
based safety-critical systems.

Under the IEC 61508 standard, which governs
functional safety of electrical/electronic/
programmable electronic safety-related systems, the
probability of a dangerous failure is such that, less
than one failure — one human life lost — is probable
every 114,115 years of continuous system operation
at the top Safety Integrity Level (SIL).

Apart from their macroscopic view of human, property, and environmental safety,
these standards’ primary goal is to ensure the software quality and fitness at the
source code level. In other words, the low (or zero) defect rate requirement extends
to software operation. A method to achieve this is through quality assurance
testing.

1.

Qt Group Code Coverage for Safety-Critical Programs 4

Code Coverage Requirements for
Safety-Critical Programs
Each safety standard mandates a specific list of software testing requirements, one
of them being code coverage of the program. Three questions arise.

1. What is code coverage?
2. How is code coverage quantified and measured?
3. Why is code coverage a requirement in safety-critical systems?

Code coverage is an analysis method that measures the percentages of source
code functions, statements, and conditions executed by one or more tests. This
code coverage data is measured and analyzed using a tool that instruments the
program code, a pre-compiler step that inserts instructions into the code to trace
the executions. When we run a suite of tests run against the instrumented binary,
coverage data becomes available.

Code coverage analysis plays a crucial role in ensuring the fitness of safety-
critical programs, and their more extensive systems. This kind of analysis informs
development teams which (potentially critical) areas of the program have been left
untouched by a priori testing.

Using a code coverage analysis tool enables the developer to identify dead code
and eliminate it, detect bugs and resolve them, refactor existing code to improve
efficiency, eliminate redundant tests, and more.

In regulated industries, code coverage plays a vital role in reducing the chance of
critical defects occurring in production. By helping to ensure software quality, code
coverage helps to ensure software confidence.

To attain certification, you must achieve standard-specific levels of code coverage.
Each standard is unique in its requirements. We’ll turn now to coverage metric
requirements within the context of four major standards. These are:

• ISO 26262 Road Vehicles – Functional Safety
• IEC 61508 Functional Safety of Electrical/Electronic/Programmable

Electronic Safety-related Systems
• DO-178 C Software Considerations in Airborne Systems
• DO 50128 Software for Railway Control and Protection Systems

In the following sections, we provide a sample C++ program, together with sample
invocations, to describe the different coverage metrics against which test coverage
can be measured. The metrics are function coverage, line coverage, statement
(block) coverage, decision (or branch) coverage, Modified Condition/Decision
Coverage (MC/DC), and Multiple Condition Coverage (MCC). Our sample program
detects whether the test case input is a real number. It demonstrates all coverage
metrics, including how some are weaker than others for specific tests.

2.

Qt Group Code Coverage for Safety-Critical Programs 5

3.
3.1

3.1.1

Coverage Metrics
Function Coverage

Definition
The function coverage of a program counts how many functions were called (and
how often). Here, the count includes member functions (or methods) in object-
oriented programming languages like C++.

Consider our sample program, with an example function call:

Note that this metric reports only that a function was called; it does not report the
execution of the body of the function.

Relevance for Safety Standards3.1.2

*architectural level

ISO 26262* IEC 61508 DO-178C EN 50128

A = + 1 = + + - -

B = + 2 = + + - -

C = + + 3 = + + - -

D = + + 4 = + + - -

Table 1
Key: + denotes recommended; ++
denotes highly recommended. A-D,
1-4 are the respective standard’s
Safety Integrity Levels (SILs).

Function coverage is generally useful as an initial assessment of a project’s
coverage, but more robust metrics are required for in-depth analyses. Indeed,
within the safety standards discussed in this paper, function coverage is required
always with stricter metrics.

Qt Group Code Coverage for Safety-Critical Programs 6

Line Coverage

Definition
Line coverage is the number of executed source code lines divided by the total
number of source code lines. Depending on the code coverage toolchain in use, only
lines that contain executable statements may be considered, not those with pure
declarations. Other tools count pure declarations as executable code, for example:
int x = 0

Formatting Dependency
This metric is unstable because it depends strongly on a program’s code formatting.
Consider our original program above, with a sample invocation:

3.2

3.2.1

3.2.2

This results in 80.00% line coverage. If you would reformat line 16 like this:

The same invocation would result in 81.82% line coverage — for a decision which is
only partially executed.

Intermediate line coverage is meaningless in quality assessments, and therefore
only complete, 100% coverage is considered. One can imagine writing an entire
function on one line or breaking the statements into multiple lines to change the
coverage percentages systematically, without any increase in the quality of the
tests.

Qt Group Code Coverage for Safety-Critical Programs 7

Disguised Control Flow
Consider our original code listing before we demonstrated the formatting
dependency. Let’s modify the code to move the subsequent return statement in
line 16, as follows:

3.2.3

With the following invocation:

Our coverage increases to 88.89%. Note that line 16 is displayed as covered. But our
test has not touched the return false statement; for decisions, or branching
of code, line coverage does not detect the missing test.

Relevance for Safety Standards
None, due to the limitations listed above. Statement coverage, addressed in section
3.3 remediates the formatting dependency described above. Decision coverage,
described in section 3.4, addresses the issue of branching seen in the example.

3.2.4

Statement Coverage

Definition
Statement coverage tracks the executed program statements. Statement coverage
is calculated by dividing the number of executed statements by the total number of
statements. Depending on the code coverage toolchain in use, the metric may be
reported using simple or compound statements, the latter also known as blocks or
statement blocks.

A block groups a sequence of simple statements. The compiler treats such blocks as
a single statement. C++, for example, uses curly braces {} for grouping. Achieving
100% statement coverage gives 100% statement block coverage, and vice versa.

3.3

3.3.1

Qt Group Code Coverage for Safety-Critical Programs 8

Statement coverage remediates the formatting dependency seen earlier in Line
Coverage. In block coverage, complete statement (block) coverage subsumes
complete line coverage. The disadvantage of statement (block) coverage is its
weakness to simple-if statements. Simple-if structures have no else clause.
Thus, complete statement coverage can be achieved for simple-if structures,
regardless of the decision’s truth outcome.

3.3.2 Relevance for Safety Standards

ISO 26262* IEC 61508 DO-178C EN 50128

A = + + 1 = + A = + + 0 = +

B = + + 2 = + + B = + + 1 = + +

C = + 3 = + + C = + + 2 = + +

D = + 4 = + + D = N / A 3 = + +

- - E = N / A 4 = + +

Table 2
Key: + denotes recommended; ++
denotes highly recommended. A-D,
1-4, A-E, 0-4 are the respective
standard’s Safety Integrity Levels
(SILs).

Statement coverage is mandatory under the ISO 26262 standard for lower SILs,
which do not highly recommend more stringent coverage levels. (For example, for
ASIL D, Modified Condition/Decision Coverage (MC/DC) is required, which subsumes
100% statement coverage.) The DO-178C standard requires no statement coverage
(or any higher-order metric) for levels D or E, where there are minor failure
conditions or no effect on the system, respectively.

Decision (Branch) Coverage

Definition
The decision (or branch) coverage is the number of executed statement blocks and
decisions divided by the total number of statements and decisions. Here, each
decision counts twice: once for the true case and once for the false case.

We can achieve 100% decision coverage in our program with a minimum of two
invocations:

3.4

3.4.1

Note that this will automatically result in 100% statement, line, and function
coverage.

Reaching 100% decision coverage ensures that all decision outcomes have been
met, a shortcoming inherent in statement coverage. That said, this metric does not
consider branches with Boolean expressions resulting from the logical operators,
e.g., && , || .

Qt Group Code Coverage for Safety-Critical Programs 9

Taking a look at line 16:

A truth table reveals the untested conditional expressions:

Cond. Truth val.

c > = 0 T ()
F (X)

c < = 9 T ()
F ()

c = ’.’ T (X)
F ()

Thus, Boolean expressions leading to the decision are not considered. This
weakness is addressed in the condition metrics discussed in the next sections.

3.4.2 Relevance for Safety Standards

Table 3
Key: + denotes recommended; ++
denotes highly recommended. A-D,
1-4, A-E, 0-4 are the respective
standard’s Safety Integrity Levels
(SILs).

ISO 26262* IEC 61508 DO-178C EN 50128

A = + 1 = + A = + + 0 = N / A

B = + + 2 = + B = + + 1 = +

C = + + 3 = + + C = N / A 2 = +

D = + + 4 = + + D = N / A 3 = + +

- - E = N / A 4 = + +

The DO-178C standard requires that decision coverage be met ”with independence,”
i.e., code verification undertaken by validators who did not author the code under
analysis.

Modified Condition/Decision Coverage (MC/DC)
Coverage

Definition
In Modified Condition/Decision Coverage (MC/DC), each condition in a decision must
be evaluated twice: once for a true outcome and once for a false outcome, while all
truth values of all other conditions in the decision remain fixed. It is required that
each Boolean outcome independently affects the decision outcome.

3.5

3.5.1

Qt Group Code Coverage for Safety-Critical Programs 10

100% MC/DC coverage is achieved with a minimum of 4 tests:

Our characteristic truth table is then:

c >= ‘0’ c <= ‘9’ c == ‘ . ’ Decision Evaluation

FALSE - TRUE FALSE Uniquely evaluated by invocation: 1.23

TRUE FALSE FALSE TRUE Uniquely evaluated by invocation: ABC

FALSE - FALSE TRUE Uniquely evaluated by invocation: %123

TRUE TRUE - FALSE Evaluated by invocations: −1.23, 1.23

Compared to decision coverage, which requires that every control structure in the
code has taken all possible decisions (or branches), MC/DC further requires that
every condition in a decision takes every possible outcome, and each condition in a
decision is shown to independently affect the decision’s outcome.

Note the empty spaces in our decision table above. This is due to the short-circuit
evaluations inherent in the C and C++ languages.

But is our decision table complete? No. We need an additional test to cover the
following combination:

c >= ‘0’ c <= ‘9’ c == ‘ . ’ Decision

TRUE FALSE TRUE FALSE

For this case, we turn to MCC, Multiple Condition Coverage, discussed in the next
section.

3.5.2 Relevance for Safety Standards

ISO 26262* IEC 61508 DO-178C EN 50128

A = + 1 = + A = + + 0 = N / A

B = + 2 = + B = N / A 1 = +

C = + + 3 = + C = N / A 2 = +

D = + + 4 = + + D = N / A 3 = + +

- - E = N / A 4 = + +

Table 4
Key: + denotes recommended; ++
denotes highly recommended. A-D,
1-4, A-E, 0-4 are the respective
standard’s Safety Integrity Levels
(SILs).

In the EN 50128 standard, MC/DC (or MCC) is recommended for SIL levels 1,2 and
highly recommended for SIL levels 3,4.

Qt Group Code Coverage for Safety-Critical Programs 11

Multiple Condition Coverage (MCC) Coverage

Definition
In Multiple Condition Coverage (MCC), every combination of condition outcomes
within a decision occurs at least once to reach full coverage. The coverage is
measured by taking the number of executed statement blocks and condition
combinations divided by their total number in the program. With MCC, a complete
decision table would be needed for full coverage. To determine the required tests in
the decision table, substitute the number of conditions for N in 2N.

Our above invocations for complete MC/DC coverage results in 93.750% MCC
coverage. In our program, it is not technically possible to write a test which
completes the decision table (owing to the single variable — c — which is included
in every condition.)

Relevance for Safety Standards
Of the four standards in this paper, the DO-178C and EN 50128 standards
recommend MCC (or MC/DC) in their requirements. Generally, the MC/DC metric
requires N + 1 tests, where N is again the number of conditions. Required tests
in the MCC metric can ‘explode’ exponentially with large numbers of conditions.
The MC/DC metric was created to compromise between plain condition/decision
coverage and MCC.

3.6

3.6.1

3.6.2

Research has been conducted
comparing the error-detection
probability between MC/DC and MCC,
in the context of testing efficiency and
overhead trade-offs. We encourage
readers to review this research as it
applies to their own programs.

Qt Group Code Coverage for Safety-Critical Programs 12

4. Conclusion
The four standards presented in this paper are unique in their coverage metric
requirements, but all share the common thread of minimizing system failures
to prevent human fatalities. Software development of safety-critical systems
requires sophisticated code coverage tools to permit a “test smart” vs. “test more”
methodology not only to achieve safety certification but to deliver products within
increasingly constrained frameworks. Automating the code coverage, where
possible, is key to reducing human errors, which are the base cause of software
defects.

Two things hold true about safety-critical software. First, their systems cannot
be made safer once they are already in use. Second, due largely to continuing
technological advancements in computing, these systems will play an increasingly
ubiquitous part in human life. Therefore, prioritizing quality assurance as a means to
ensuring confidence and fitness of the software for use is paramount.

https://www.qt.io/product/quality-assurance/coco

