
Qt vs Android
Ultimate comparison of Qt & Linu#

vs Kotlin & Android stacks

vs



Problem statement

Software leaders across industries face a growing challenge: 
which technology stack delivers the best balance of 
performance, scalability, and efficiency for modern 
embedded systems?

To provide a clear, data-driven answer, we prepared a direct 
comparison between Qt on Linux/Android and Kotlin on 
Android. Although the focus is on frameworks, applications 
rely heavily on their operating environments. 

Therefore, we implemented the same demo application 
using both stacks to compare not only coding 
methodologies but also runtime performance.

This study aims to offer a practical, unbiased perspective 
on how Qt and Kotlin perform under real-world constraints, 
helping development teams makµ
informed, future-ready technology decisions.

Lukas Kosińskí
CEO & Foundeç
Somco Software (prev. Scythe Studio)



02 Benchmarking Boot time benchmarks

Rendering performance

Resource utilization

Thermal characteristics

03 Developer workflow 
and experience

01 Demo Application 
Overview

04 Implementinq
graphical effects

05 Sector-specific 
considerations

06 Strategi�
implications



Demo Application Overview

To ensure a fair and practical comparison, Somco Software (previously known 
as Scythe Studio) designed and implemented the same demo application 
using both technology stacks - Qt on Linux and Kotlin on Android.

Our team selected a resource-constrained board intentionally, reflecting the 
real-world limitations of embedded systems. We began by designing the UX/UI 
in Figma, then developed two fully functional implementations, each built 
natively for its respective stack.

Although this benchmark is sector-agnostic, we chose an automotive-themed 
concept, reflecting one of the industries most affected by the Qt vs. Android 
debate. The demo represents a digital dashboard for an electric vehicle, 
named Perun - after the Slavic god of lightning.

The user interface is visually rich and animation-heavy, featurinë
custom-drawn elements and fluid transitions to test graphics performance 
and responsiveness. While this PDF cannot showcase the animationsÐ
a demonstration video is available on our Somco Software YouTube channel.

Hardware Qt + Linux stack Android + Kotlin stack

Toradex Verdin iMX8M Plus, 4GB 
RAM

NXP® i.MX 8M Plus applications 
processor

Quad Cortex-A53 @ 1.8 GHz + 
Cortex-M7 @ 800 MHz

HDMI output (1920×720 @ 60 
Hz)

Custom Yocto image (based on 
Kirkstone)

Kernel: 5.15.177

Display stack: Wayland

Qt version: 6.8.2

Android 14 (Upside Down Cake)

Kernel: 6.1.57

API level: 34

04

https://youtu.be/BHT4UHt8VjA?si=_MWx96nN6E4QTrls


Comparison authors

05

Somco Software is Embedded Software House with a great expertise in 
design, GUI, Qt framework and embedded programming including Linux 
customization. We are proud to hold the title of official Qt Service Partner.

Partners

Certifications



Benchmarking Methodology

To provide a fair comparison and for the sake of transparency, we explain here 
what metrics were measured and how we did it. All measurements were taken 
directly on the target hardware, once running the embedded Linux system and 
once running the Android system.

Embedded Linux (Qt)

The process began by collecting system information such as CPU load, 
memory usage, storage performance, GPU activity, power draw, and thermal 
data. These values were recorded over several minutes while the system was 
idle to establish a performance baseline. Boot time was measured by tracking 
the duration from power-on to the fully loaded graphical environment.

Afterward, the test application was launched in a controlled environment, and 
its resource usage was sampled at short, regular intervals. Each sample 
included timestamps, CPU and GPU utilization, memory footprint, and thermal 
state. All results were saved to structured data files for subsequent analysis.

Android (Kotlin)

For the Android system, the same methodology was applied. System-level 
metrics were gathered through standard system interfaces and performance 
counters. Application memory consumption was extracted directly from the 
Android diagnostic output, while thermal data came from the onboard 
temperature sensors.

Boot performance was measured in the same way as for the Qt app.

Frame Rendering

In both environments, frame rendering performance was measured within the 
application working. Metrics included frame per second rate.

Each version was left running for several minutes while frame statistics were 
collected, allowing a direct comparison between the two stacks.

06



Boot time measurements revealed a clear difference between the two 
environments. The Yocto-based Linux system reached the point of displaying 
the instrument cluster in just over 10 seconds, whereas the Android system 
required around 40 seconds to reach the same operational state.

In automotive applications, this difference can be meaningful. Instrument 
clusters are expected to become available almost immediately after the vehicle 
is powered on, and in many regions, regulatory guidelines emphasize the 
prompt display of driver information. Android’s startup process involves 
initializing a broad range of system components and background services, 
which contributes to longer boot times. By contrast, Yocto-based systems can 
be customized to the specific hardware, omitting unnecessary services and 
achieving a more streamlined boot sequence. It also benefits cybersecurity 
which is a hot topic.

07

Boot Performance



08

When the systems were running, differences in responsiveness were clear�
The Qt/Yocto cluster consistently delivered around 59 frames per second. This 
performance was steady and predictable, which is often more valuable than 
raw frame rates in automotive displays. Smooth gauge sweeps and stable 
transitions were achieved without major timing fluctuations.

Android, implemented through Jetpack Compose, reached a lower level of 
responsiveness on the same hardware. In these tests, it averaged closer to 32 
frames per second. The animations appeared visibly less fluid, and the cluster’s 
visual experience felt less immediate. Our first attempt without any 
optimizations that require high expertise, it offered only 7-9 FPS.

The graph shows how the FPS rate changed over time for both applications.

Rendering and responsiveness



09

For the record, as Qt framework is cross-platform we installed it also on the 
target with Android and results were pretty much the same as on Linux (a bit 
better on Linux) therefore it's not a system influencing rendering but the 
framework itself.

The chart below shows the minimum, average, and maximum FPS achieved by 
the Qt application on Yocto, the Qt application on Android, and the Kotlin 
application on Android.

In order to ensure full transparency of the results during testing, we decided to 
prepare two additional versions of the application in Qt – both for Yocto and 
Android, where FPS was deliberately limited to 30 FPS to show how Qt uses 
resources with similar rendering results. Of course, we did not include these 
statistics for the 30 FPS capped version in the chart above, as the minimum, 
average, and maximum FPS rates would be 30.



Beyond what the driver sees, the two stacks placed very different demands on 
the hardware. Under load, the Qt/Yocto application kept average CPU busy 
time at around 34 percent, while Kotlin/Android required 41 percent. This 
difference matters because every percentage point of CPU usage in a cluster 
system is a portion of resources unavailable for other tasks, including safety-
critical computations.

10

System Resource Utilization



The most notable differences are observed in GPU utilization. As demonstrated 
in Section 2.2, Rendering and Responsiveness, the Qt/Yocto implementation 
achieved an average of 59 FPS, whereas the Kotlin/Android implementation 
reached only 32 FPS*

Despite delivering nearly twice the frame rate, Qt/Yocto exhibited lower GPU 
utilization by approximately 21 percentage points.

Furthermore, when the Qt application was configured with a 30 FPS limit - 
bringing its frame rate closer to that of the Kotlin/Android implementation, the 
disparity in GPU usage became even more pronounced.

11



Memory consumption also diverged. Qt/Yocto required an average resident 
memory of just over 109 megabytes, while Android consumed 161 megabytes. 
For a consumer smartphone this would be trivial, but for an embedded system 
deployed across a fleet of vehicles, every megabyte affects hardware 
selection, costs, and long-term maintainability.

Today I learned.

RSS (Resident Set Size) represents the total physical memory mapped by a 
process, counting shared libraries in full, whereas PSS (Proportional Set Size) 
adjusts this by dividing shared memory among all processes that use it, 
providing a more accurate measure of the process’s actual memory cost@

Qt/Android shows a high RSS because it maps a large number of Android 
system and Qt shared libraries, which are heavily shared with other processes 
and therefore inflate RSS without significantly increasing PSS?

PSS matters a lot too. Kotlin/Android has low PSS probably, because Android 
runs a lot of other processes in the background while on Yocto it’s barely 
nothing.

12



Thermal readings showed that the Qt/Yocto application generated slightly 
higher peak temperatures when there was no FPS cap, with the CPU reaching 
around 60 degrees Celsius, compared with 54 degrees under Kotlin/Android. 
Although, Qt deployed on both Linux and Android managed to get better 
temperatures once we intentionally limited FPS to match maximal rendering 
rate of Kotlin.

For a system designer, this raises important architectural considerations. 
Efficient thermal management must balance heat generation, cooling design, 
and the battery or power budget of the vehicle. Both stacks operated within 
safe margins, but their different thermal and power behaviors could influence 
hardware choices and integration strategies.

13

Thermal Characteristics



Qt + Linux

The technical differences extended into the development process itself. 
Building with Qt on Yocto required establishing a full cross-compilation 
environment, creating a Yocto image, and carefully configuring the SDK. 
Although, at Somco configuring custom Linux images is our bread and butter, 
this process is more complex and demands specialized expertise, but it also 
grants precise control over what runs on the device. And that as mentioned 
really matters in the times of SBoMs and all cybersecurity regulations.

Anyway it is important to mention that Qt has ready Linux images for chosen 
recommended targets available in the Commercial License. Also some 
hardware vendors like Toradex come up with solutions that make your life a lot 
easier.

The separation of declarative QML for the interface and C++ for the logic 
enforces a structure that feels natural in embedded projects, where 
deterministic behavior and resource predictability are central. Implementing 
visual effects and state machines also proved more straightforward in QML�
as the declarative model lends itself well to describing transitions and system 
states, whereas achieving the same in Kotlin required more manual effort.

14

Developer's workflow and experience



Kotlin + Android

Working with Android and Jetpack Compose was almost the opposite�
The project could be started in minutes from within Android Studio, with 
previews, profilers, and debugging tools all available immediately.

This environment accelerates prototyping and lowers the entry barrier for 
developers already familiar with Android. However, when it came to 
implementing more advanced visual effects, Jetpack Compose presented 
several practical challenges. While Compose provides its own set of built-in 
effects such as blur, shadow, and various graphical layers, these proved less 
reliable under continuous animation on the tested i.MX hardware. Certain 
effects exhibited visible glitches or stuttering, particularly when parameters 
were animated at runtime, which appeared to be linked to recomposition and 
offscreen rendering overhead within the Compose graphics pipeline.

To address these limitations, custom shaders were developed. Although this 
approach offered more flexibility and allowed for finer control over visuals, it 
also introduced inconsistencies across Android API levels and GPU drivers. The 
same shader did not always render identically on different Android versions. 
Additionally, shader precision, color space handling, and internal caching 
behavior could vary subtly, resulting in non-deterministic visual output 
between devices or builds. In contrast, the Qt rendering path proved far more 
predictable: once an effect was implemented in QML or GLSL and verified on 
the target, it behaved consistently across runs, with stable frame timing and 
visual uniformity.

The separation of declarative QML for the interface and C++ for the logic 
enforces a structure that feels natural in embedded projects, where 
deterministic behavior and resource predictability are central. Implementing 
visual effects and state machines also proved more straightforward in QML, as 
the declarative model lends itself well to describing transitions and system 
states, whereas achieving the same in Kotlin required more manual effort.

15



Although it might be a detail, Qt offers sharper and more attractive visual 
effects.

Qt Kotlin

Although the Perun UI demo represents the dashboard of a conceptual electric 
vehicle, this comparison of Qt and Android technology stacks remains largely 
sector-agnostic. Both the developer experience and the measured 
performance indicators influence technology decisions across a wide range of 
industries. However, certain domain-specific factors can make one stack more 
suitable than the other.

16

Comparison of implementatio^
of the same glow effect



17

Medical

Many medical systems operate in kiosk mode, where a single application runs 
full-screen, and user access to the rest of the system is restricted for security, 
reliability, and regulatory compliance.

Automotive

The growing popularity of Android in the automotive industry is largely driven 
by the emergence of Android Automotive OS - a variant of Android specifically 
designed for in-vehicle infotainment (IVI) and instrument cluster systems. It 
provides a ready-to-use ecosystem with access to Google services, voice 
assistant integration, OTA updates, and a familiar app model, which 
accelerates development and leverages existing mobile expertise.

However, this convenience comes at the cost of reduced control over system 
components and longer boot times, which may limit its applicability for real-
time or safety-critical features. Qt, by contrast, allows full customization of the 
software stack and has long been used for mission-critical HMI applications 
where deterministic performance is essential.

One of the aspects that should influence your choice is the specific 
environment of your industry. This comparison isn’t just for one use case¼
It has strong implications across several industries.

Sector-specific considerations



18

Somco Software encountered such a case, where an existing Android-based 
medical application had to be migrated to another operating system.

Thanks to Qt’s cross-platform architecture, this transition was achievable 
without a complete rewrite - something that would have been significantly 
more complex using native Java or Kotlin frameworks.

Another key concern in the medical field is software provenance and 
regulatory documentation, such as SBOM (Software Bill of Materials) and OTS 
(Off-the-Shelf Software) assessments. Qt’s monolithic ecosystem - with built-
in modules for 3D rendering, networking, database access, and visualization - 
minimizes reliance on third-party libraries. This significantly reduces the SOUP 
(Software of Unknown Provenance) assessment scope and overall 
documentation effort, compared to Android, where developers depend on 
multiple external components and libraries.

Electronics & IoT

In the broader Electronics and IoT domain, the choice of technology stack 
depends heavily on the target hardware. This benchmark showed that Android 
faced performance challenges even on the NXP i.MX8 Plus, which is already 
considered a high-end embedded processor by industry standards. Qt, on the 
other hand, scales far beyond that range — supporting MPUs, MCUs, and even 
bare-metal environments. This flexibility makes Qt a practical choice for 
devices where footprint, startup time, and real-time responsiveness are 
critical.



Strategic Implications

The evaluation ultimately highlights two different approaches to the same 
challenge. Qt/Yocto represents a philosophy of lean, hardware-close design, in 
which startup speed, resource efficiency, and predictability dominate. It is well-
suited to environments where determinism and minimal footprint are key, such 
as safety-critical displays and long-term embedded deployments. However, Qt 
often involves commercial licensing fees, which can be significant depending 
on deployment scale. Organizations must weigh these recurring costs against 
the benefits of its lightweight footprint and deterministic behavior.

One of the key advantages of Qt is its ability to make projects more flexible and 
maintainable over time. Thanks to its cross-platform architecture, applications 
can be adapted to new operating systems or hardware targets with minimal 
rework, ensuring long-term scalability and investment protection.

Android/Compose, in contrast, represents a philosophy of ecosystem leverage. 
It excels in productivity, rapid iteration, and integration with the Android 
Automotive ecosystem. Its trade-off is a heavier runtime and greater demand 
on hardware resources. On the cost side, Android itself is open source and free 
of licensing fees, but teams may incur indirect expenses in the form of higher 
hardware requirements and the need for continuous updates aligned with the 
Android ecosystem. For teams already aligned with Android as a strategic 
platform, this may be acceptable or even advantageous, particularly if time-to-
market, developer availability, and ecosystem services are more valuable than 
minimizing license costs or squeezing every cycle from the SoC.

19



Summary

Category Qt / Yocto Linux Kotlin Jetpack Compose / Android

Boot time

Frame rate

CPU usage

GPU usage

Memory

Thermals

Dev setup

Hardware 
compatibility

~10 seconds

~59 FPS on average

~52%

~64%

~109 MB (RSS)

~60 °C

Moderate (cross-compilation)

Wide range of devices supported

~40 seconds

~31.50 FPS on average

~41%

~85%

~161 MB (RSS)

~54 °C

Moderate (Android Studio, built-in)

Limited to chosen vendors

The two implementations, though built for the same task and on the same 
hardware, paint very different pictures. Qt on Yocto delivered faster startup, 
lower CPU utilization, smaller memory footprint, and more consistent rendering. 
Android with Jetpack Compose offered an easier and faster development 
experience, but required more resources and produced less fluid runtime 
behavior on the tested platform.

Yocto + Qt Android + Kotlin

Pros

Cons

Fast boot

Low GPU usage

High, stable and consistent FPS

Full system control

Deterministic behavior

Minimal OS overhead

Java integration possibility for native 
features

Complex build setup

Potential Qt licensing costs

More manual integration and debugging 
effort

Rich development tools (Android Studio)

Large developer community

No licensing fees

Easy integration with Android Automotive

Long boot time

Lower frame rate

Higher GPU and memory usage

Less system control

Heavier OS footprint and ecosystem 
dependency

20



21

Verdict

Neither approach can be declared “better*
in all cases. The decision comes down to 
priorities.

If the product strategy demands maximum 
efficiency, rapid boot, and predictable frame 
timing, Qt/Yocto provides a natural fit.

If the strategy instead emphasizes platform 
maturity, ecosystem alignment, and out-of-
the-box readiness with Android Automotive, 
Jetpack Compose offers clear advantages - 
while acknowledging that baseline features 
such as navigation, app store access, and 
voice assistants come with additional 
integration and performance costs rather 
than being “free” parts of AAOS.



link

somcosoftware.com

link link

https://www.linkedin.com/company/somcosoftware/posts/?feedView=all
https://somcosoftware.com/en
https://www.youtube.com/@somco-software
https://github.com/somcosoftware

