SOMCO
software

Qt vs Android

Ultimate comparison of Qt & Linux
vs Kotlin & Android stacks

t

=" SOMCO
.':l software

Lukas Kosinski
CEO & Founder
Somco Software (prev. Scythe Studio)

O 1 Demo Application
Overview

o

O 2 Benchmarking

O 3 Developer workflow
and experience
O 4 Implementing
graphical effects
O 5 Sector-specific
considerations

O 6 Strategic
implications

SOMCO
software

Boot time benchmarks
Rendering performance
Resource utilization

Thermal characteristics

Miles

000085256
g% [

\ \ 350.2 Mil
L les
22.64 KWh - Trip Tirma

B4.7 kW 4
Power "= BN Energy . h " 01:25:56
Time to destination

00:58:45

SOMCo ey
I software

Demo Application Overview 01

To ensure a fair and practical comparison, Somco Software (previously known
as Scythe Studio) designed and implemented the same demo application
using both technology stacks - Qt on Linux and Kotlin on Android.

Our team selected a resource-constrained board intentionally, reflecting the
real-world limitations of embedded systems. We began by designing the UX/UI
in Figma, then developed two fully functional implementations, each built
natively for its respective stack.

Although this benchmark is sector-agnostic, we chose an automotive-themed
concept, reflecting one of the industries most affected by the Qt vs. Android
debate. The demo represents a digital dashboard for an electric vehicle,
named Perun - after the Slavic god of lightning.

The user interface is visually rich and animation-heavy, featuring
custom-drawn elements and fluid transitions to test graphics performance
and responsiveness. While this PDF cannot showcase the animations,

a demonstration video is available on our Somco Software YouTube channel.

Hardware Qt + Linux stack Android + Kotlin stack
Toradex Verdin iMX8M Plus, 4GB Custom Yocto image (based on Android 14 (Upside Down Cake)
RAM Kirkstone)
Kernel: 6.1.57
NXP® i.MX 8M Plus applications Kernel: 515177
processor APl level: 34

Display stack: Wayland
Quad Cortex-A53 @ 1.8 GHz + .
Cortex-M7 @ 800 MHz Qt version: 6.8.2

HDMI output (1920x720 @ 60
Hz)

= SOMCO
.':l software 04

https://youtu.be/BHT4UHt8VjA?si=_MWx96nN6E4QTrls

Comparison authors

Somco Software is Embedded Software House with a great expertise in
design, GUI, Qt framework and embedded programming including Linux
customization. We are proud to hold the title of official Qt Service Partner.

Partners | — ¢-Toradex W SoMLabs

PARTNER Swiss. Embedded. Computing.

& Riverdi

Certifications ﬁ “ ok kA k
Ciuteh

CERTIFIED CERTIFIED
ISO 13485:2016 ISO 9001:2015
Quality Management for Medical Devices Quality Management System

05

To provide a fair comparison and for the sake of transparency, we explain here
what metrics were measured and how we did it. All measurements were taken
directly on the target hardware, once running the embedded Linux system and
once running the Android system.

| Embedded Linux (Qt)

The process began by collecting system information such as CPU load,
memory usage, storage performance, GPU activity, power draw, and thermal
data. These values were recorded over several minutes while the system was
idle to establish a performance baseline. Boot time was measured by tracking
the duration from power-on to the fully loaded graphical environment.

Afterward, the test application was launched in a controlled environment, and
its resource usage was sampled at short, regular intervals. Each sample
included timestamps, CPU and GPU utilization, memory footprint, and thermal
state. All results were saved to structured data files for subsequent analysis.

l Android (Kotlin)

For the Android system, the same methodology was applied. System-level
metrics were gathered through standard system interfaces and performance
counters. Application memory consumption was extracted directly from the
Android diagnostic output, while thermal data came from the onboard
temperature sensors.

Boot performance was measured in the same way as for the Qt app.

l Frame Rendering
In both environments, frame rendering performance was measured within the
application working. Metrics included frame per second rate.

Each version was left running for several minutes while frame statistics were
collected, allowing a direct comparison between the two stacks.

somco

software

06

Boot time measurements revealed a clear difference between the two
environments. The Yocto-based Linux system reached the point of displaying
the instrument cluster in just over 10 seconds, whereas the Android system
required around 40 seconds to reach the same operational state.

In automotive applications, this difference can be meaningful. Instrument
clusters are expected to become available almost immediately after the vehicle
is powered on, and in many regions, regulatory guidelines emphasize the
prompt display of driver information. Android’s startup process involves
initializing a broad range of system components and background services,
which contributes to longer boot times. By contrast, Yocto-based systems can
be customized to the specific hardware, omitting unnecessary services and
achieving a more streamlined boot sequence. It also benefits cybersecurity
which is a hot topic.

Boot time

Kotlin/Android 35,01 514

Qt/Yocto |3,554 6,62

0 2 10 15 20 25 30 35 40 45

seconds

Boot time First frame

SOMmco
software

07

When the systems were running, differences in responsiveness were clear.

The Qt/Yocto cluster consistently delivered around 59 frames per second. This
performance was steady and predictable, which is often more valuable than
raw frame rates in automotive displays. Smooth gauge sweeps and stable
transitions were achieved without major timing fluctuations.

Android, implemented through Jetpack Compose, reached a lower level of
responsiveness on the same hardware. In these tests, it averaged closer to 32
frames per second. The animations appeared visibly less fluid, and the cluster’s
visual experience felt less immediate. Our first attempt without any
optimizations that require high expertise, it offered only 7-9 FPS.

The graph shows how the FPS rate changed over time for both applications.

FPS over time

80

60 MWHWW
I/V\J'\/\/WW\NW\N_W\/

— Qt = Kotlin

20

sSOMmco

software

08

For the record, as Qt framework is cross-platform we installed it also on the
target with Android and results were pretty much the same as on Linux (a bit
better on Linux) therefore it's not a system influencing rendering but the
framework itself.

The chart below shows the minimum, average, and maximum FPS achieved by
the Qt application on Yocto, the Qt application on Android, and the Kotlin
application on Android.

Frames per second

80
65,00
60,00
60 59,28
45,00 46,88
40 39,00
32,00 31,67
20
7,00
0
Qt/Yocto Qt/Android Kotlin/Android
MIN AVG MAX

In order to ensure full transparency of the results during testing, we decided to
prepare two additional versions of the application in Qt - both for Yocto and
Android, where FPS was deliberately limited to 30 FPS to show how Qt uses
resources with similar rendering results. Of course, we did not include these
statistics for the 30 FPS capped version in the chart above, as the minimum,
average, and maximum FPS rates would be 30.

SOMmco
software

09

Beyond what the driver sees, the two stacks placed very different demands on
the hardware. Under load, the Qt/Yocto application kept average CPU busy
time at around 34 percent, while Kotlin/Android required 41 percent. This
difference matters because every percentage point of CPU usage in a cluster
system is a portion of resources unavailable for other tasks, including safety-
critical computations.

CPU

Qt/Yocto (30 FPS) 21,08

Qt/Yocto 34,04

Qt/Android (30 FPS) 34,43

41,39

Kotlin/Android

Qt/Android 51,95

10 20 30 40 50 60

o

Average % usage

SOMmco 10
software

The most notable differences are observed in GPU utilization. As demonstrated
in Section 2.2, Rendering and Responsiveness, the Qt/Yocto implementation
achieved an average of 59 FPS, whereas the Kotlin/Android implementation
reached only 32 FPS.

Despite delivering nearly twice the frame rate, Qt/Yocto exhibited lower GPU
utilization by approximately 21 percentage points.

GPU
Qt/Yocto (30 FPS) 31,58
Qt/Android (30 FPS) 34,79
Qt/Android ' 59,30
Qt/Yocto 64,32
Kotlin/Android 85,09
0 20 40 60 80 100

Average % usage

Furthermore, when the Qt application was configured with a 30 FPS limit -
bringing its frame rate closer to that of the Kotlin/Android implementation, the
disparity in GPU usage became even more pronounced.

SOMmco
software

1

Memory consumption also diverged. Qt/Yocto required an average resident
memory of just over 109 megabytes, while Android consumed 161 megabytes.
For a consumer smartphone this would be trivial, but for an embedded system
deployed across a fleet of vehicles, every megabyte affects hardware
selection, costs, and long-term maintainability.

Memory usage

Qt/Yocto 109,18 104,31
Qt/Android 215,94 108,99
Kotlin/Android 161,61 42,23

0 50 100 150 200 250 300 350

Average RSS (MB) Average PSS (MB)

Today | learned:

RSS (Resident Set Size) represents the total physical memory mapped by a
process, counting shared libraries in full, whereas PSS (Proportional Set Size)
adjusts this by dividing shared memory among all processes that use it,
providing a more accurate measure of the process’s actual memory cost.

Qt/Android shows a high RSS because it maps a large number of Android
system and Qt shared libraries, which are heavily shared with other processes
and therefore inflate RSS without significantly increasing PSS.

PSS matters a lot too. Kotlin/Android has low PSS probably, because Android
runs a lot of other processes in the background while on Yocto it's barely
nothing.

SOMmco
software

Thermal readings showed that the Qt/Yocto application generated slightly
higher peak temperatures when there was no FPS cap, with the CPU reaching
around 60 degrees Celsius, compared with 54 degrees under Kotlin/Android.
Although, Qt deployed on both Linux and Android managed to get better
temperatures once we intentionally limited FPS to match maximal rendering
rate of Kotlin.

For a system designer, this raises important architectural considerations.
Efficient thermal management must balance heat generation, cooling design,
and the battery or power budget of the vehicle. Both stacks operated within
safe margins, but their different thermal and power behaviors could influence
hardware choices and integration strategies.

CPU temperature

Qt/Yocto (30 FPS) 46,84
Qt/Android (30 FPS) 51,86
Kotlin/Android 54,32
Qt/Android 57,77
Qt/Yocto 60,03
0 20 40 60 80
Average °C

SOMmco
software

l Qt + Linux

The technical differences extended into the development process itself.
Building with Qt on Yocto required establishing a full cross-compilation
environment, creating a Yocto image, and carefully configuring the SDK.
Although, at Somco configuring custom Linux images is our bread and butter,
this process is more complex and demands specialized expertise, but it also
grants precise control over what runs on the device. And that as mentioned
really matters in the times of SBoMs and all cybersecurity regulations.

Anyway it is important to mention that Qt has ready Linux images for chosen
recommended targets available in the Commercial License. Also some
hardware vendors like Toradex come up with solutions that make your life a lot
easier.

The separation of declarative QML for the interface and C++ for the logic
enforces a structure that feels natural in embedded projects, where
deterministic behavior and resource predictability are central. Implementing
visual effects and state machines also proved more straightforward in QML,
as the declarative model lends itself well to describing transitions and system
states, whereas achieving the same in Kotlin required more manual effort.

maingmi - untitied150 - Qt Creator - 8

somco

software

14

Kotlin + Android

Working with Android and Jetpack Compose was almost the opposite.
The project could be started in minutes from within Android Studio, with
previews, profilers, and debugging tools all available immediately.

This environment accelerates prototyping and lowers the entry barrier for
developers already familiar with Android. However, when it came to
implementing more advanced visual effects, Jetpack Compose presented
several practical challenges. While Compose provides its own set of built-in
effects such as blur, shadow, and various graphical layers, these proved less
reliable under continuous animation on the tested i.MX hardware. Certain
effects exhibited visible glitches or stuttering, particularly when parameters
were animated at runtime, which appeared to be linked to recomposition and
offscreen rendering overhead within the Compose graphics pipeline.

To address these limitations, custom shaders were developed. Although this
approach offered more flexibility and allowed for finer control over visuals, it
also introduced inconsistencies across Android API levels and GPU drivers. The
same shader did not always render identically on different Android versions.
Additionally, shader precision, color space handling, and internal caching
behavior could vary subtly, resulting in non-deterministic visual output
between devices or builds. In contrast, the Qt rendering path proved far more
predictable: once an effect was implemented in QML or GLSL and verified on
the target, it behaved consistently across runs, with stable frame timing and
visual uniformity.

The separation of declarative QML for the interface and C++ for the logic
enforces a structure that feels natural in embedded projects, where
deterministic behavior and resource predictability are central. Implementing
visual effects and state machines also proved more straightforward in QML, as
the declarative model lends itself well to describing transitions and system
states, whereas achieving the same in Kotlin required more manual effort.

SOMcCoO

software

15

Comparison of implementation 04
of the same glow effect

Although it might be a detail, Qt offers sharper and more attractive visual
effects.

Kotlin

Although the Perun Ul demo represents the dashboard of a conceptual electric
vehicle, this comparison of Qt and Android technology stacks remains largely
sector-agnostic. Both the developer experience and the measured
performance indicators influence technology decisions across a wide range of
industries. However, certain domain-specific factors can make one stack more
suitable than the other.

= SOMCO
.':l software

16

One of the aspects that should influence your choice is the specific
environment of your industry. This comparison isn’t just for one use case.
It has strong implications across several industries.

l Automotive

The growing popularity of Android in the automotive industry is largely driven
by the emergence of Android Automotive OS - a variant of Android specifically
designed for in-vehicle infotainment (IVI) and instrument cluster systems. It
provides a ready-to-use ecosystem with access to Google services, voice
assistant integration, OTA updates, and a familiar app model, which
accelerates development and leverages existing mobile expertise.

However, this convenience comes at the cost of reduced control over system
components and longer boot times, which may limit its applicability for real-
time or safety-critical features. Qt, by contrast, allows full customization of the
software stack and has long been used for mission-critical HMI applications
where deterministic performance is essential.

l Medical

Many medical systems operate in kiosk mode, where a single application runs
full-screen, and user access to the rest of the system is restricted for security,
reliability, and regulatory compliance.

SOMmco
software

17

Somco Software encountered such a case, where an existing Android-based
medical application had to be migrated to another operating system.

Thanks to Qt’s cross-platform architecture, this transition was achievable
without a complete rewrite - something that would have been significantly
more complex using native Java or Kotlin frameworks.

Another key concern in the medical field is software provenance and
regulatory documentation, such as SBOM (Software Bill of Materials) and OTS
(Off-the-Shelf Software) assessments. Qt's monolithic ecosystem - with built-
in modules for 3D rendering, networking, database access, and visualization -
minimizes reliance on third-party libraries. This significantly reduces the SOUP
(Software of Unknown Provenance) assessment scope and overall
documentation effort, compared to Android, where developers depend on
multiple external components and libraries.

Electronics & loT

In the broader Electronics and loT domain, the choice of technology stack
depends heavily on the target hardware. This benchmark showed that Android
faced performance challenges even on the NXP i.MX8 Plus, which is already
considered a high-end embedded processor by industry standards. Qt, on the
other hand, scales far beyond that range — supporting MPUs, MCUs, and even
bare-metal environments. This flexibility makes Qt a practical choice for
devices where footprint, startup time, and real-time responsiveness are
critical.

SOMmco
software

The evaluation ultimately highlights two different approaches to the same
challenge. Qt/Yocto represents a philosophy of lean, hardware-close design, in
which startup speed, resource efficiency, and predictability dominate. It is well-
suited to environments where determinism and minimal footprint are key, such
as safety-critical displays and long-term embedded deployments. However, Qt
often involves commercial licensing fees, which can be significant depending
on deployment scale. Organizations must weigh these recurring costs against
the benefits of its lightweight footprint and deterministic behavior.

One of the key advantages of Qt is its ability to make projects more flexible and
maintainable over time. Thanks to its cross-platform architecture, applications
can be adapted to new operating systems or hardware targets with minimal
rework, ensuring long-term scalability and investment protection.

Android/Compose, in contrast, represents a philosophy of ecosystem leverage.
It excels in productivity, rapid iteration, and integration with the Android
Automotive ecosystem. Its trade-off is a heavier runtime and greater demand
on hardware resources. On the cost side, Android itself is open source and free
of licensing fees, but teams may incur indirect expenses in the form of higher
hardware requirements and the need for continuous updates aligned with the
Android ecosystem. For teams already aligned with Android as a strategic
platform, this may be acceptable or even advantageous, particularly if time-to-
market, developer availability, and ecosystem services are more valuable than
minimizing license costs or squeezing every cycle from the SoC.

SOMmco
software

19

Category
Boot time
Frame rate
CPU usage
GPU usage
Memory
Thermals
Dev setup

Hardware
compatibility

Qt / Yocto Linux

~10 seconds

~59 FPS on average

~52%

~64%

~109 MB (RSS)

~60 °C

Moderate (cross-compilation)

Wide range of devices supported

Kotlin Jetpack Compose / Android
~40 seconds

~31.50 FPS on average

~41%

~85%

~161 MB (RSS)

~54 °C

Moderate (Android Studio, built-in)

Limited to chosen vendors

The two implementations, though built for the same task and on the same
hardware, paint very different pictures. Qt on Yocto delivered faster startup,
lower CPU utilization, smaller memory footprint, and more consistent rendering.
Android with Jetpack Compose offered an easier and faster development
experience, but required more resources and produced less fluid runtime
behavior on the tested platform.

Pros

Cons

SOMmco
software

Yocto + Qt

Fast boot

Low GPU usage

High, stable and consistent FPS

Full system control

Deterministic behavior

Minimal OS overhead

Java integration possibility for native
features

Complex build setup

Potential Qt licensing costs

More manual integration and debugging
effort

Android + Kotlin

Rich development tools (Android Studio)
Large developer community
No licensing fees

Easy integration with Android Automotive

Long boot time

Lower frame rate

Higher GPU and memory usage
Less system control

Heavier OS footprint and ecosystem
dependency

20

Verdict

Neither approach can be declared “better”
in all cases. The decision comes down to
priorities.

If the product strategy demands maximum
efficiency, rapid boot, and predictable frame
timing, Qt/Yocto provides a natural fit.

If the strategy instead emphasizes platform
maturity, ecosystem alignment, and out-of-
the-box readiness with Android Automotive,
Jetpack Compose offers clear advantages -
while acknowledging that baseline features
such as navigation, app store access, and
voice assistants come with additional
integration and performance costs rather
than being “free” parts of AAOS.

SOMmco
software

21

ESOMCO
.':l software

somcosoftware.com

infl > N

https://www.linkedin.com/company/somcosoftware/posts/?feedView=all
https://somcosoftware.com/en
https://www.youtube.com/@somco-software
https://github.com/somcosoftware

