Group

The State of Software
Quality in Safety-Critical
Industries

Why Software Teams in Safety-Critical
Industries Struggle to Prevent Technical Debt

2026

Group

The High Cost of Technical Debt Respondent Profile

Between June and October 2025, we partnered with Gatepoint Research to survey software 54% Senior or Department Managers
engineering and product leaders across several safety-critical industries. Our goal was to better 279% \/Ps and Directors
understand their strategies for mitigating rising software maintenance costs and preventing

19% Software Engineers
technical debt.

Theresults are based on a survey of 100 leaders across four safety-critical sectors: automotive, These results offer insights and a benchmark for the shift in how high-stakes industries are
medtech, industrial automation, and aerospace. prioritizing software quality to prevent technical debt from stalling future growth.
Survey conducted by: Survey sponsored by:

GATEPOINT)

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Group

Reading on a mobile device?
Turn it sideways for the best reading experience.

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Group

Contents

1. Your Software Architecture Is Drifting Faster Than You Think

2. The Real Cost Is When Your Team Is Stuck Firefighting Instead of Innovating

3. Your Tools Check Code Quality, But Do They Prevent Architectural Drift?

4. What Would Make Teams Finally Change?

5. Teams Need Architectural Control That Matches the Pace They're Being Asked to Maintain

6. Choosing Your Path: Architectural Decisions That Shape What Comes Next

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

05

11

14

18

21

26

1

Your Software Architecture
s Drifting

Group Chapter One

Your Software Architecture
s Drifting Faster Than You Think

[THE CONSEQUENCES? }

Slower delivery and a growing disconnect between what organizations
claim to prioritize and what their day-to-day practices support.

The gap between your design documents and your actual code widens with every sprint.

In our survey of 100 engineering and product leaders in safety-critical industries, only 5% said
their teams review architecture daily. Almost half wait until release phases to examine structural

Issues.

We surveyed leaders across automotive, medical devices, industrial automation, and aerospace

and defense—industries where defects mean recalls, regulatory failures, or worse.
The pattern was clear: Teams building life-critical systems are struggling to match the pace

that modern development demands . Many are still relying on processes built for a different

era while being pushed to deliver at today's speed.

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Group Chapter One

Three Main Contradictions
Driving the Problem

How did we get here? How did teams responsible for building systems where defects mean
regulatory failures end up caught between impossible demands for speed and growing

technical debt?

Our survey reveals three core contradictions that contribute to the increasing pressures in

safety-critical software development.

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

6%

4%

Group Chapter One

Contradiction #1
Teams want speed. But most check architecture infrequently.

Half of the respondents (50%) report that the pressure to speed up time-to-market while
maintaining safe and reliable software has reached its highest level in the past year. Yet when

we asked about practices:

Only 6% check architecture daily

22%

22% check weekly or at sprint-end

L6%

46% only analyze per release phase (monthly or milestone-driven)

22%

22% rarely or never conduct deep architecture analysis

Other

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

The industry wants Formula 1 performance from commuter-car processes.
Half of the teams say the pressure for speed-with-quality has intensified
most. Yet three-quarters are still only checking their architecture monthly, or

even less frequently.
By the time architectural problems surface at release milestones, the damage
is already baked into the codebase, the code has diverged from design, and

dependencies have tangled.

\What should take hours now takes weeks to unravel and fix.

Group Chapter One

Contradiction #2
Quality is "top priority." But tools and practices don't support it.

29% rank "balancing speed and quality" as their #1 priority in their software quality approach

this year, followed by fostering a quality-first culture within teams. Yet:

= 24% say many checks are manual or inconsistent (partially automated)
= 11% rely entirely on manual reviews and homegrown scripts

» 4% don't maintain software quality in a structured way

Quality is a priority in principle — not in practice.

Organizations say quality matters, then rely on manual reviews and inconsistent processes

that break under pressure.
While 38% use commercial tools, another 24% supplement with manual processes and 11%

remain fully manual. This reveals significant gaps in achieving comprehensive automation for

many organizations in safety-critical industries.

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

[CURRENT APPROACH TO MAINTAINING AND VERIFYING SOFTWARE QUALITY }

38%

Using commercial tools

(one or more)

24
Partially automated

(some tools, many checks still automated or inconsistent)

21%

Custom/internal solution

(tailored in-house solution)

11%
Fully manual
(primarily rely on peer reviews and checklists)
4%
Not currently maintaining software quality in a structured way
2%

Other

Group Chapter One

Contradiction #3
Architectural drift drives tech debt. But teams don't monitor it continuously.

48%

48% cite architectural drift and hidden defects as a primary

contributor to rising software technical debt.

6%

Only 6% conduct daily architecture deviation analysis.

22%

Another 22% checking weekly or at sprint-end. Think about this: nearly half
of teams identify architectural drift as a major driver of technical debt, yet

only about one quarter monitor it at least weekly. What about the rest?

47%

47% wait until release phases for their monthly or

milestone-driven reviews.

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

By the time these teams discover architectural problems, dozens or hundreds
of commits have already introduced violations. Each shortcut, rushed deadline,

and "we'll fix it l[ater" decision has compounded.

Architecture doesn't drift all at once. It degrades gradually, silently, across
weeks or months of unchecked development. By the time it shows up in release

testing, the issue isn't a small fix anymore, it's a structural problem.

10

2

The Real Cost Is When Your Team Is Stuck

Group Chapter Two

The Real Cost Is When Your
Team Is Stuck Firefighting
Instead of Innovating

The pressure for speed with quality has become the most intense challenge.

But multiple factors contribute to mounting technical debt.

Survey respondents identified several primary contributors to rising technical debt

(respondents could select multiple factors):

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

7%

28%

(PRIMARY CONTRIBUTORS TO RISING SOFTWARE TECHNICAL DEBT j

48%

L6%

L4%

Architectural drift and undetected (hidden) defects

Rapidly evolving compliance standards

Increased maintenance complexity

Reduced system stability and scalability

Other

12

Group Chapter Two

START BY ASKING YOURSELF THREE QUESTIONS j
The result? [Q

1 How often do you check for architectural drift?

Daily (6% of teams) Weekly/sprint-end (22%) Per release phase (46%) Rarely/never (22%)

Engineers spend their days firefighting preventable problems instead of building new
capabilities. And the consequences interlock in damaging ways. What percentage of your quality checks are manual?
When architectural problems surface at release, teams can't simply ship. They must stop and
untangle dependencies that have devolved into spaghetti code, and rebuild the structure. Each
violation that reaches production multiplies the eventual correction burden, driving rework Fully automated (38%) Partially automated (24%) Fully manual (11%)

costs significantly higher than early detection would have cost.

Meanwhile, as architecture drifts from documented design, teams accumulate regulatory risk

and potential audit failures alongside their technical debt. - _ o _ _ _ _ _
Can you visualize architectural drift in real-time, or only discover it during reviews?

The ultimate consequence of this is system fragility, where changes create unexpected ripple

effects, and hotfixes solve one problem only to spawn new ones.

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES , c
? Your answers reveal whether you're ahead of the curve or caught in the speed trap.

3

Your Tools Check Code Quality,
But Do They

Group Chapter Three

Your Tools Check Code
Quality, But Do They Prevent
Architectural Drift?

If teams have quality tools, why aren't they working?

Teams aren't suffering from lack of tools. They're suffering from tools

that don't surface the structural problems that slow them down.

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

15

Group Chapter Three

When we asked what capabilities are missing from static analysis and quality tools today,

respondents (respondents could select multiple factors) said:

45%
need customizable dashboards with visualizations and metrics _
Notice the pattern?
L45%
The top gaps are all about visibility and control. Teams have tools that check code
need tools that enforce clean architecture principles quality, but they don't provide::
(o)
36% = (lear visibility into what's happening with architecture.
need better support for their specific architectures = Proactive enforcement of architectural principles.
= Flexibility to handle specific architectures and use cases.
369% = Actionable insights that prevent problems, not just detect them.
need detection of architecture violations
36%

need tools to uncover cloned and dead code
21%

need enforcement of MISRA/AUTOSAR and safety-critical coding guidelines

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Group Chapter Three

The data reveals an automation gap that forces teams to compromise on manual solutions

that don't scale. Current quality maintenance approaches break down as follows:

38%

use commercial tools actively The fact that 21% built custom internal solutions is telling. When commercial

tools don't meet needs, teams invest in significant effort building their own
249 and often end up creating new maintenance burdens in the process.

are partially automated (tools plus manual checks) When we asked about selection criteria for new tools, the message couldn't

be clearer. Teams don't want more features. They want features that actually
21% work for their specific situations.
built custom/internal solutions

11%

primarily rely on manual methods

4%

lack structured quality maintenance

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

L

What Would Make

Group Chapter Four

What Would Make
Teams Finally Change?

Organizations know they have problems. But knowing isn't enough. Action requires a trigger,

and the survey reveals exactly what that trigger is.
Teams will tolerate technical debt as long as they can maintain velocity. But the moment debt

starts slowing them down, urgency kicks in. We asked “which outcome would trigger a green

light for new analysis technology” .

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

{ WHICH OUTCOME WOULD TRIGGER A GREEN LIGHT FOR NEW ANALYSIS TECHNOLOGY }

42%
Accelerate time-to-market without sacrificing quality
30%
Scale development efficiently across teams and products
28%

Ensure consistent compliance with safety standards

The top answer wasn't "reduce technical debt" or "improve compliance!” It was achieving what

currently seems impossible: going faster without breaking things.

Nearly half of teams identify architectural drift as a major problem, yet only about one quarter

monitor it at least weekly, and fewer still have automated enforcement.

That's the crisis—teams lack the visibility and control to address them before they become critical.

19

Group Chapter Four

The pattern of delayed action

{ THE SURVEY FINDINGS REVEAL WHEN ORGANIZATIONS TYPICALLY REACH THAT BREAKING POINT: }

Velocity drops Complexity increases Compliance Stability degrades

becomes urgent

The 50% who say speed-with- The 44% struggling with The 46% citing rapidly evolving Stability degrades. The 28%
quality pressure has intensified maintenance complexity find standards face the reality that experiencing reduced system
most are experiencing this now — that simple changes require their architecture has drifted from stability watch as changes create
features that once took days now understanding increasingly documented design just as audits unexpected ripple effects and
take weeks. tangled dependencies. approach. hotfixes spawn new problems.

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

By the time these triggers intensify
enough to force action, teams are

deep in crisis mode.

The architectural drift that
accumulates gradually over months
requires significant effort to correct
— if (@ big IF) it can be corrected

without fundamental refactoring.

20

5

Teams Need Architectural Control
That They're
Being Asked to Maintain

Group Chapter Five

Teams Need Architectural Control
That Matches the Pace They're
Being Asked to Maintain

Organizations succeeding in safety-critical software aren't running more manual
reviews or buying more tools. They've made four fundamental shifts which are

presented on the following pages.

Group

Chapter Five

{ SHIFT 1 BUILT CONTINUOUS ARCHITECTURAL VISIBILITY }

Instead of checking architecture at release milestones, leading teams monitor it

continuously. Drift becomes visible immediately, not weeks later.

For example, a commit triggers an automated architecture check within seconds. The
dashboard flags deviations before code review begins. Teams see trends over time rather

than point-in-time snapshots. Discussion happens during development, not at release.

This doesn't mean daily manual reviews. It means automated analysis integrated into

existing workflows.

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

{ SHIFT 2 AUTOMATED ENFORCEMENT, NOT JUST DETECTION }

Detection tells you what broke. Enforcement prevents it from breaking

in the first place.

The 44% who identified the need for clean architecture enforcement understand
this crucial distinction. Modern approaches flag violations AND block commits that
introduce architectural drift, with clear explanations of why the violation matters

and how to fix it.

The difference is proactive prevention versus reactive problem-solving.

23

Group Chapter Five

[SHIFT 3 ADAPTED TOOLS TO THEIR CONTEXT J [SHIFT 4 CONNECTED QUALITY TO BUSINESS OUTCOMES J

Generic tools treat all code the same. But safety-critical systems have specific patterns, Teams who successfully invest in quality tooling don't talk about "technical

risks, and compliance needs. excellence" in isolation. They connect architectural control directly to business

outcomes (% investment trigger):

The 36% asking for better support of specific architectures, combined with the 36%

needing architecture violation detection, recognize that one size doesn't fit all. 42% 28%

30%
ACCELERATING REDUCING ENABLING
TIME-TO-MARKET COMPLIANCE RISK EFFICIENT SCALING

Effective tools let teams define their own architectural rules, compliance requirements,

and quality gates, then enforce them automatically based on their unique context.

This framing transforms quality from a cost center to a velocity enabler.

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Group

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter Five

CONCLUSION

While our survey reveals the gaps, solutions that address these specific
needs are already being implemented by forward-thinking organizations,

.e. the 6% checking daily and the 22% checking weekly.

They didn't slow down to achieve that visibility. They invested in automation
that provides architectural control at the pace modern development

demands.

These four shifts aren’t theoretical luxuries. They're practical necessities to

maintain software quality, and they require you to make a choice.

25

6

Architectural
Decisions That Shape What Comes Next

Group

Choosing Your Path:
Architectural Decisions That
Shape What Comes Next

Most teams default to one of two paths, and they both lead to the same place.

A third path exists, but it requires a different kind of investment .

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter Six

27

Group

Path 1
Continue current practices

Check architecture per release phase or less frequently. Accept

that drift will accumulate between checks. React when problems

become critical.
This is the path of 46% who only analyze at release phases and

22% who rarely check. And it means slower velocity over time as

technical debt compounds.

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter Six

Path 2
Add manual processes

Increase review frequency, add more checks, and build

custom scripts.

The 21% who built custom solutions and 11% relying on
manual methods have learned what this path delivers:
bottlenecks that don't scale as teams grow. You trade one

problem for another.

Path 3
Invest in modern architectural control

Automate monitoring, enforce principles proactively, and integrate

quality into workflow.

This is the path of the 6% checking daily and 22% checking
weekly. They invest in automation that provides visibility without

bottlenecks.
The teams choosing Path 3 are accelerating without

accumulating debt. The ones on Paths 1 or 2 will face the

same challenges next year or find themselves deeper in crisis.

28

Group Chapter One

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter Two Chapter Three Chapter Four Chapter Five Chapt

{ IF YOU'RE EXPERIENCING THESE SYMPTOMS

= Architecture drift discovered late in development cycles.
» Manual quality processes that can't keep pace with delivery demands.
= Tools that don't support your specific architectural patterns.

= Growing technical debt despite quality efforts.

» Difficulty scaling development across teams.

= Theintensifying pressure to go faster while maintaining safety.

You're not alone. You're in the majority.

Group Chapter Six

Your Roadmap to Path 3

Step 1 Step 2 Step 3 Step 4

Start with an Build your case with Evaluate tools for Act before the problem

honest assessment business outcomes what's missing forces your hand

Use the diagnostic questions earlier in The strongest investment trigger is Look for capabilities the survey revealed The 50% experiencing intensified speed-

this report. Where do you actually fall accelerating time-to-market without as critical gaps: customizable dashboards quality pressure and 44% struggling with

in the data? sacrificing quality (42%). Don't pitch (45% need this), clean architecture maintenance complexity are already in the
"better architecture. enforcement (44%), and support for your danger zone. It's a choice between reactive

If you're checking architecture less specific architectural patterns (36%). intervention and proactive prevention.

frequently than weekly, you're in the Instead, pitch sustainable velocity. Generic code quality isn't enough for

72% at risk of accumulating the drift Show how continuous enforcement prevents safety-critical systems.

and hidden defects that 48% identify the six-week delays and last-minute rebuilds

as primary debt drivers that kill launches.

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Group

What sets the 28% apart

Earlier, we established two truths: You can't go faster by looking less frequently. And you

can't go faster by looking manually.

What the data shows instead is that 28% of teams have found a more sustainable way
forward — one that aligns architectural oversight with the pace of modern software

development.
These teams aren't moving faster because they work harder or take on more risks. They've
made a different kind of investment: automated, continuous architectural control tailored to

their environment.

That shift gives them consistent visibility without slowing teams down.

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter Six

The 6% checking daily and 22% checking weekly aren't exceptional outliers.

They've simply removed friction.

By automating insight and enforcement, they've reduced bottlenecks, caught drifts earlier, and kept
complexity from compounding. As a result, they're the group seeing acceleration rather than slowing
down.

Teams checking less frequently aren't doing anything wrong. Many are operating with tools that
weren't designed for today’s pace or architectural complexity. But gaps in visibility allow drift and

hidden defects to accumulate.

The 48% who cite these as primary debt drivers are experiencing the result: certification delays,

rework, and reactive cycles that are hard to escape.

Ultimately, this isn't a question of effort or intent.

It's a question of when and how architectural visibility is built into the workflow.

Some teams address architectural visibility proactively, while velocity is high and complexity is

manageable. Others are forced to address it later, when delays and risk make the decision unavoidable.

The difference isn't capability, it's timing.

31

Group

Winning Teams Build This
Infrastructure. You Can Too.

Axivion Architecture Verification is how teams close the gap between
intention and practice. Customers report 50% less manual rework time

and cut audit preparation time by 70-80%.

We help leading organizations in turning compliance from a bottleneck

to competitive advantage.

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Explore Axivion
Architecture Verification

gt.io/quality-assurance/axivion-architecture-verification

32

https://www.qt.io/contact-us
https://www.qt.io/contact-us
https://www.qt.io/quality-assurance/axivion-architecture-verification

Group

About Qt Group

Qt Group (Nasdag Helsinki: QTCOM) is a global software company,
trusted by industry leaders and over 1.5 million developers worldwide

to create applications and smart devices that users love.

We help our customers to increase productivity through the

entire product development lifecycle: from Ul design and software
development to quality management and deployment. Our customers
are in more than 70 different industries in over 180 countries. Qt
Group employs some 900 people, and its net sales in 2024 were
209.1 MEUR.

To learn more, visit www.qt.io

https://www.qt.io/

