
The State of Software
Quality in Safety-Critical
Industries
Why Software Teams in Safety-Critical
Industries Struggle to Prevent Technical Debt

2026

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Between June and October 2025, we partnered with Gatepoint Research to survey software
engineering and product leaders across several safety-critical industries. Our goal was to better
understand their strategies for mitigating rising software maintenance costs and preventing
technical debt.

The results are based on a survey of 100 leaders across four safety-critical sectors: automotive,
medtech, industrial automation, and aerospace.

 54% Senior or Department Managers

 27% VPs and Directors

 19% Software Engineers

These results offer insights and a benchmark for the shift in how high-stakes industries are
prioritizing software quality to prevent technical debt from stalling future growth.

The High Cost of Technical Debt Respondent Profile

Survey conducted by: Survey sponsored by:

2

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Reading on a mobile device?
Turn it sideways for the best reading experience.

3

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

1.	 Your Software Architecture Is Drifting Faster Than You Think	 05

2.	 The Real Cost Is When Your Team Is Stuck Firefighting Instead of Innovating	 11

3.	 Your Tools Check Code Quality, But Do They Prevent Architectural Drift?	 14

4.	 What Would Make Teams Finally Change? 	 18

5.	 Teams Need Architectural Control That Matches the Pace They're Being Asked to Maintain 	 21

6.	 Choosing Your Path: Architectural Decisions That Shape What Comes Next	 26

Contents

4

Your Software Architecture
Is Drifting Faster Than You Think

1

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five

Slower delivery and a growing disconnect between what organizations
claim to prioritize and what their day-to-day practices support.

THE CONSEQUENCES?

Chapter Six

The gap between your design documents and your actual code widens with every sprint.

In our survey of 100 engineering and product leaders in safety-critical industries, only 5% said
their teams review architecture daily. Almost half wait until release phases to examine structural
issues.

We surveyed leaders across automotive, medical devices, industrial automation, and aerospace
and defense—industries where defects mean recalls, regulatory failures, or worse.

The pattern was clear: Teams building life-critical systems are struggling to match the pace
that modern development demands . Many are still relying on processes built for a different
era while being pushed to deliver at today’s speed.

Your Software Architecture
Is Drifting Faster Than You Think

6

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

Three Main Contradictions
Driving the Problem

How did we get here? How did teams responsible for building systems where defects mean
regulatory failures end up caught between impossible demands for speed and growing
technical debt?

 Our survey reveals three core contradictions that contribute to the increasing pressures in
 safety-critical software development.

77

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five

6%

22%

46%

22%

4%

Only 6% check architecture daily

Other

22% rarely or never conduct deep architecture analysis

46% only analyze per release phase (monthly or milestone-driven)

22% check weekly or at sprint-end

Chapter Six

Contradiction #1
Teams want speed. But most check architecture infrequently.

Half of the respondents (50%) report that the pressure to speed up time-to-market while
maintaining safe and reliable software has reached its highest level in the past year. Yet when
we asked about practices: The industry wants Formula 1 performance from commuter-car processes.

 Half of the teams say the pressure for speed-with-quality has intensified
 most. Yet three-quarters are still only checking their architecture monthly, or
 even less frequently.

By the time architectural problems surface at release milestones, the damage
is already baked into the codebase, the code has diverged from design, and
dependencies have tangled.

What should take hours now takes weeks to unravel and fix.

8

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

29% rank "balancing speed and quality" as their #1 priority in their software quality approach
this year, followed by fostering a quality-first culture within teams. Yet:

•	 24% say many checks are manual or inconsistent (partially automated)
•	 11% rely entirely on manual reviews and homegrown scripts
•	 4% don't maintain software quality in a structured way

 Quality is a priority in principle — not in practice.

Organizations say quality matters, then rely on manual reviews and inconsistent processes
that break under pressure.

While 38% use commercial tools, another 24% supplement with manual processes and 11%
remain fully manual. This reveals significant gaps in achieving comprehensive automation for
many organizations in safety-critical industries.

Contradiction #2
Quality is "top priority." But tools and practices don't support it.

38%

24%

21%

11%

4%

2%

Using commercial tools
(one or more)

Fully manual
(primarily rely on peer reviews and checklists)

Not currently maintaining software quality in a structured way

Other

Partially automated
(some tools, many checks still automated or inconsistent)

Custom/internal solution
(tailored in-house solution)

CURRENT APPROACH TO MAINTAINING AND VERIFYING SOFTWARE QUALITY

99

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

Contradiction #3
Architectural drift drives tech debt. But teams don't monitor it continuously.

48%

22%

47%

6%

48% cite architectural drift and hidden defects as a primary
contributor to rising software technical debt.

47% wait until release phases for their monthly or
milestone-driven reviews.

Only 6% conduct daily architecture deviation analysis.

Another 22% checking weekly or at sprint-end. Think about this: nearly half
of teams identify architectural drift as a major driver of technical debt, yet
only about one quarter monitor it at least weekly. What about the rest?

By the time these teams discover architectural problems, dozens or hundreds
of commits have already introduced violations. Each shortcut, rushed deadline,
and "we'll fix it later" decision has compounded.

Architecture doesn't drift all at once. It degrades gradually, silently, across
weeks or months of unchecked development. By the time it shows up in release
testing, the issue isn’t a small fix anymore, it’s a structural problem.

1010

The Real Cost Is When Your Team Is Stuck
Firefighting Instead of Innovating

2

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

The pressure for speed with quality has become the most intense challenge.
But multiple factors contribute to mounting technical debt.

Survey respondents identified several primary contributors to rising technical debt
(respondents could select multiple factors):

The Real Cost Is When Your
Team Is Stuck Firefighting
Instead of Innovating 48%

46%

44%

28%

7%

Architectural drift and undetected (hidden) defects

Reduced system stability and scalability

Other

Rapidly evolving compliance standards

Increased maintenance complexity

PRIMARY CONTRIBUTORS TO RISING SOFTWARE TECHNICAL DEBT

12

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

Engineers spend their days firefighting preventable problems instead of building new
capabilities. And the consequences interlock in damaging ways.

When architectural problems surface at release, teams can't simply ship. They must stop and
untangle dependencies that have devolved into spaghetti code, and rebuild the structure. Each
violation that reaches production multiplies the eventual correction burden, driving rework
costs significantly higher than early detection would have cost.

Meanwhile, as architecture drifts from documented design, teams accumulate regulatory risk
and potential audit failures alongside their technical debt.

The ultimate consequence of this is system fragility, where changes create unexpected ripple
effects, and hotfixes solve one problem only to spawn new ones.

Your answers reveal whether you're ahead of the curve or caught in the speed trap.

How often do you check for architectural drift?1

2

3

What percentage of your quality checks are manual?

Can you visualize architectural drift in real-time, or only discover it during reviews?

Daily (6% of teams) Weekly/sprint-end (22%) Per release phase (46%) Rarely/never (22%)

Fully automated (38%) Partially automated (24%) Fully manual (11%)

START BY ASKING YOURSELF THREE QUESTIONSThe result?

Your Tools Check Code Quality,
But Do They Prevent Architectural Drift?

3

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

If teams have quality tools, why aren't they working?

Teams aren't suffering from lack of tools. They're suffering from tools
 that don't surface the structural problems that slow them down.

Your Tools Check Code
Quality, But Do They Prevent
Architectural Drift?

15

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

45%

44%

36%

36%

36%

21%

need tools that enforce clean architecture principles

need customizable dashboards with visualizations and metrics

need tools to uncover cloned and dead code

need enforcement of MISRA/AUTOSAR and safety-critical coding guidelines

need better support for their specific architectures

need detection of architecture violations

Notice the pattern?

The top gaps are all about visibility and control. Teams have tools that check code
quality, but they don't provide :

•	 Clear visibility into what's happening with architecture.
•	 Proactive enforcement of architectural principles.
•	 Flexibility to handle specific architectures and use cases.
•	 Actionable insights that prevent problems, not just detect them.

When we asked what capabilities are missing from static analysis and quality tools today,
respondents (respondents could select multiple factors) said:

16

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

The data reveals an automation gap that forces teams to compromise on manual solutions
that don’t scale. Current quality maintenance approaches break down as follows:

38%

24%

21%

11%

4%

use commercial tools actively

primarily rely on manual methods

lack structured quality maintenance

are partially automated (tools plus manual checks)

built custom/internal solutions

The fact that 21% built custom internal solutions is telling. When commercial
tools don't meet needs, teams invest in significant effort building their own
and often end up creating new maintenance burdens in the process.

When we asked about selection criteria for new tools, the message couldn’t
be clearer. Teams don't want more features. They want features that actually
work for their specific situations.

17

What Would Make
Teams Finally Change?

4

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

42%

30%

28%

Accelerate time-to-market without sacrificing quality

Scale development efficiently across teams and products

Ensure consistent compliance with safety standards

Organizations know they have problems. But knowing isn't enough. Action requires a trigger,
and the survey reveals exactly what that trigger is.

Teams will tolerate technical debt as long as they can maintain velocity. But the moment debt
starts slowing them down, urgency kicks in. We asked “which outcome would trigger a green
light for new analysis technology” .

The top answer wasn't "reduce technical debt" or "improve compliance." It was achieving what
 currently seems impossible: going faster without breaking things.

Nearly half of teams identify architectural drift as a major problem, yet only about one quarter
monitor it at least weekly, and fewer still have automated enforcement.

That's the crisis—teams lack the visibility and control to address them before they become critical.

What Would Make
Teams Finally Change?

WHICH OUTCOME WOULD TRIGGER A GREEN LIGHT FOR NEW ANALYSIS TECHNOLOGY

19

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

The pattern of delayed action

Complexity increasesVelocity drops Compliance
becomes urgent

Stability degrades

THE SURVEY FINDINGS REVEAL WHEN ORGANIZATIONS TYPICALLY REACH THAT BREAKING POINT:

By the time these triggers intensify
enough to force action, teams are
deep in crisis mode.

The architectural drift that
accumulates gradually over months
requires significant effort to correct

— if (a big IF) it can be corrected
without fundamental refactoring.

The 50% who say speed-with-
quality pressure has intensified
most are experiencing this now —
features that once took days now
take weeks.

Stability degrades. The 28%
experiencing reduced system
stability watch as changes create
unexpected ripple effects and
hotfixes spawn new problems.

The 46% citing rapidly evolving
standards face the reality that
their architecture has drifted from
documented design just as audits
approach.

The 44% struggling with
maintenance complexity find
that simple changes require
understanding increasingly
tangled dependencies.

20

Teams Need Architectural Control
That Matches the Pace They're
Being Asked to Maintain

5

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

Organizations succeeding in safety-critical software aren't running more manual
reviews or buying more tools. They've made four fundamental shifts which are
presented on the following pages.

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

Teams Need Architectural Control
That Matches the Pace They're
Being Asked to Maintain

22

SHIFT 1 BUILT CONTINUOUS ARCHITECTURAL VISIBILITY

Instead of checking architecture at release milestones, leading teams monitor it
continuously. Drift becomes visible immediately, not weeks later.

For example, a commit triggers an automated architecture check within seconds. The
dashboard flags deviations before code review begins. Teams see trends over time rather
than point-in-time snapshots. Discussion happens during development, not at release.

This doesn't mean daily manual reviews. It means automated analysis integrated into
existing workflows.

Detection tells you what broke. Enforcement prevents it from breaking
in the first place.

The 44% who identified the need for clean architecture enforcement understand
this crucial distinction. Modern approaches flag violations AND block commits that
introduce architectural drift, with clear explanations of why the violation matters
and how to fix it.

The difference is proactive prevention versus reactive problem-solving.

SHIFT 2 AUTOMATED ENFORCEMENT, NOT JUST DETECTION

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

23

SHIFT 3 ADAPTED TOOLS TO THEIR CONTEXT SHIFT 4 CONNECTED QUALITY TO BUSINESS OUTCOMES

Generic tools treat all code the same. But safety-critical systems have specific patterns,
risks, and compliance needs.

The 36% asking for better support of specific architectures, combined with the 36%
needing architecture violation detection, recognize that one size doesn't fit all.

Effective tools let teams define their own architectural rules, compliance requirements,
and quality gates, then enforce them automatically based on their unique context.

Teams who successfully invest in quality tooling don't talk about "technical
excellence" in isolation. They connect architectural control directly to business
outcomes (% investment trigger):

This framing transforms quality from a cost center to a velocity enabler.

42%

ACCELERATING
TIME-TO-MARKET

REDUCING
COMPLIANCE RISK

ENABLING
EFFICIENT SCALING

28% 30%

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

24

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

While our survey reveals the gaps, solutions that address these specific
needs are already being implemented by forward-thinking organizations,
i.e. the 6% checking daily and the 22% checking weekly.

They didn't slow down to achieve that visibility. They invested in automation
that provides architectural control at the pace modern development
demands.

These four shifts aren’t theoretical luxuries. They’re practical necessities to
maintain software quality, and they require you to make a choice.

CONCLUSION

25

Choosing Your Path: Architectural
Decisions That Shape What Comes Next

6

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

Choosing Your Path:
Architectural Decisions That
Shape What Comes Next

Most teams default to one of two paths, and they both lead to the same place.
 A third path exists, but it requires a different kind of investment .

27

Path 2
Add manual processes

Increase review frequency, add more checks, and build
custom scripts.

The 21% who built custom solutions and 11% relying on
manual methods have learned what this path delivers:
bottlenecks that don't scale as teams grow. You trade one
problem for another.

Path 3
Invest in modern architectural control

Automate monitoring, enforce principles proactively, and integrate
quality into workflow.

This is the path of the 6% checking daily and 22% checking
weekly. They invest in automation that provides visibility without
bottlenecks.

 The teams choosing Path 3 are accelerating without
 accumulating debt. The ones on Paths 1 or 2 will face the
 same challenges next year or find themselves deeper in crisis.

Path 1
Continue current practices

Check architecture per release phase or less frequently. Accept
that drift will accumulate between checks. React when problems
become critical.

This is the path of 46% who only analyze at release phases and
22% who rarely check. And it means slower velocity over time as
technical debt compounds.

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

28

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

•	 Architecture drift discovered late in development cycles.
•	 Manual quality processes that can't keep pace with delivery demands.
•	 Tools that don't support your specific architectural patterns.
•	 Growing technical debt despite quality efforts.
•	 Difficulty scaling development across teams.
•	 The intensifying pressure to go faster while maintaining safety.

You're not alone. You're in the majority.
 But that doesn't mean you have to stay there.

IF YOU'RE EXPERIENCING THESE SYMPTOMS

29

The strongest investment trigger is
accelerating time-to-market without
sacrificing quality (42%). Don't pitch
"better architecture."

Instead, pitch sustainable velocity.
Show how continuous enforcement prevents
the six-week delays and last-minute rebuilds
that kill launches.

Use the diagnostic questions earlier in
this report. Where do you actually fall
in the data?

If you're checking architecture less
frequently than weekly, you're in the
72% at risk of accumulating the drift
and hidden defects that 48% identify
as primary debt drivers

Look for capabilities the survey revealed
as critical gaps: customizable dashboards
(45% need this), clean architecture
enforcement (44%), and support for your
specific architectural patterns (36%).
Generic code quality isn't enough for
safety-critical systems.

The 50% experiencing intensified speed-
quality pressure and 44% struggling with
maintenance complexity are already in the
danger zone. It’s a choice between reactive
intervention and proactive prevention.

Step 2
Build your case with
business outcomes

Step 1
Start with an
honest assessment

Step 3
Evaluate tools for
what's missing

Step 4
Act before the problem
forces your hand

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

Your Roadmap to Path 3

30

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Chapter Six

What sets the 28% apart

Earlier, we established two truths: You can’t go faster by looking less frequently. And you
can’t go faster by looking manually.

What the data shows instead is that 28% of teams have found a more sustainable way
forward — one that aligns architectural oversight with the pace of modern software
development.

These teams aren’t moving faster because they work harder or take on more risks. They’ve
made a different kind of investment: automated, continuous architectural control tailored to
their environment.

That shift gives them consistent visibility without slowing teams down.

 The 6% checking daily and 22% checking weekly aren’t exceptional outliers.
 They’ve simply removed friction.

By automating insight and enforcement, they’ve reduced bottlenecks, caught drifts earlier, and kept
complexity from compounding. As a result, they’re the group seeing acceleration rather than slowing
down.

Teams checking less frequently aren’t doing anything wrong. Many are operating with tools that
weren’t designed for today’s pace or architectural complexity. But gaps in visibility allow drift and
hidden defects to accumulate.

The 48% who cite these as primary debt drivers are experiencing the result: certification delays,
rework, and reactive cycles that are hard to escape.

 Ultimately, this isn’t a question of effort or intent.

It’s a question of when and how architectural visibility is built into the workflow.

Some teams address architectural visibility proactively, while velocity is high and complexity is
manageable. Others are forced to address it later, when delays and risk make the decision unavoidable.

 The difference isn’t capability, it’s timing.

31

THE STATE OF SOFTWARE QUALITY IN SAFETY-CRITICAL INDUSTRIES

Axivion Architecture Verification is how teams close the gap between
intention and practice. Customers report 50% less manual rework time
and cut audit preparation time by 70-80%.

We help leading organizations in turning compliance from a bottleneck

to competitive advantage.

Winning Teams Build This
Infrastructure. You Can Too. Explore Axivion

Architecture Verification

qt.io/quality-assurance/axivion-architecture-verification

32

https://www.qt.io/contact-us
https://www.qt.io/contact-us
https://www.qt.io/quality-assurance/axivion-architecture-verification

About Qt Group

Qt Group (Nasdaq Helsinki: QTCOM) is a global software company,

trusted by industry leaders and over 1.5 million developers worldwide

to create applications and smart devices that users love.

We help our customers to increase productivity through the

entire product development lifecycle: from UI design and software

development to quality management and deployment. Our customers

are in more than 70 different industries in over 180 countries. Qt

Group employs some 900 people, and its net sales in 2024 were

209.1 MEUR.

To learn more, visit www.qt.io

https://www.qt.io/

