
2024

User Interface Design:
Functionality, Tooling,
and Workflow
The key ingredients to efficiently navigate
the complexity of modern UI software

Foreword

Rich functionality, reliability, and seamless usability are key soft-
ware features inherent to modern users’ collective imagination
about digital devices. But user expectations are constantly ris-
ing and today high performance, connectivity, advanced graph-
ics, and multi-platform operability have become key competitive
advantages between products that do their job and products
that set new market standards.

In successful digital devices, an enticing visual appearance en-
closes powerful functionality that is unleashed in a simple and
natural way. As a defining factor, a plain user experience and
neat visuals conceal the complexity of the software architec-
ture. Consequently, the amount of work—in terms of UI and UX
design, lines of code, third-party solutions, and background ser-
vices,—the hours of testing, bug fixing, and optimization that
led to the ultimate result cannot be imagined by most people.

However, software developers and managers know how com-
plex and wearing it is to deliver a product that just feels like a

natural extension of our senses and abilities. The right tools
make the real difference not only in reducing production cost
and time-to-market but in securing the overall success of
the enterprise.

At Qt Group, we have tackled such complexities for about thirty years
and identified the key features that a UI framework should include
to deliver iconic digital experiences across all types of electronic de-
vices. The Qt framework pioneered UI app creation when wireframes
were drawn on paper. Today that the user experience is defined by
real-time collaborative authoring tools, Qt empowers the automatic
conversion of designs into fully functional applications and their val-
idation in immersive 3D environments.

We take pride in being at the forefront of the digital revolution that
is transforming industries and impacting our daily lives. Our experi-
ence and expertise organized in this new eBook shall help our reader
choose the right tools for succeeding in the modern hyper-competi-
tive market.

Contents

1. Foundations	 4
The UI Application	 6
The UI Framework	 6
The Middleware	 7
Cross-Platform Deployment	 8

2. Performance	 10
Event-Driven Architecture	 12
Profiling	 13
Quality Assurance	 14

3. Graphics	 15
Real-Time Graphics	 17
Data Binding	 18
The Interplay of 2D and 3D Graphics	 19

Immersive 3D Graphics	 20
Physically Based Rendering	 21
HDR Lighting	 22
Postprocessing Effects	 22
Theming	 22
Embedding Game-Engine Graphics	 23

4. Workflow	 24
An End-To-End Solution	 26
Design and Development	 27
Automated Testing	 28
Standardization and Customization	 28
Platform Engineering	 29
Ownership	 30

1. Foundations

1. Foundations 2. Performance 3. Graphics 4. Workflow

5User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

User interface (UI) applications are an essential component of
modern software and of the fast-growing set of software-driv-
en devices that inhabit our daily lives. Intuitive design, cohesive
user experience, prompt responsiveness, high degree of cus-
tomizability, compatibility with different devices and platforms
are all core features of UI applications.

Ultimately, their purpose is to provide users with a flawless and
intuitive experience while interacting with software and digital
devices. And despite their wide use, there may be misconcep-
tions about what qualifies as a true UI application, and what
not. Such mistakes may negatively impact our judgment in the
choice of the right development framework for the creation of
UI software.

6User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

The UI Application
Consider graphics. It is a defining aspect of UI applications, but
it is one aspect among many others. A UI application is not just
graphics rendered on a screen—rather, it is a visual interface
to live data, services, and functions that run in real time in the
backend. Nor is it a standalone software that, while rendering
a scene on the screen, is allowed to consume all the available
system resources—but a bundle of UI elements, like widgets,
charts, interaction areas, and views, that coexist on one or mul-
tiple screens to provide users with the information they need for
several different tasks in parallel.

Several processes compete with one another for a limited set of
system resources—such as memory, processing power, stor-
age, and often also power on low-energy devices—and we’ll
see some smart solutions to handle concurrent tasks efficiently.

More in general, the internal structure, visual layout, and logic
flow of UI applications are unique and radically different from
those of other types of visual software like, for instance, com-
puter generated imagery (CGI) or video games. As such, their
proper and efficient management requires dedicated tooling.

The UI Framework
The rich set of features and services that enter a UI application
needs a development environment providing generic function-
ality and resources that designers and engineers can use as a
foundation for the creation of UI applications. The UI framework
offers the creative environment for UI designers and backend
developers alike to realize their product vision to the full extent.

On the design side, it includes content authoring tools, assets
libraries, configurable graphics pipelines and visual effects, re-
al-time preview and testing on emulator, and much more to de-
vise the end product’s user experience.

For developers, it offers reference code and applications, APIs,
compilers, profilers, code toolsets, libraries, and support for con-
nectivity protocols that turn designs and prototypes into fully
functional, future-proof UI applications.

Each function that the framework provides represents less code
that developers need to write, hence faster time-to-market and in-
creased reliability. Wizards guide users interactively through the pro-
ject stages, for instance, by creating the necessary files, solving de-
pendencies, and specifying settings based on the use case. Semantic
highlighting on code, syntax check, auto-completion, refactoring ac-
tions are other useful features that help create quality code faster.

7User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

Clearly, the more complete the UI framework offering is across
all stages of software development, the less work is required for
designers and developers to implement their ideas. Adopting a
comprehensive framework relieves users of complex clerical ac-
tivities and error-prone routines to let them focus on what really
matters—the ultimate user experience.

The Middleware

Besides providing tools and functionality, the UI framework
works as middleware, namely as a neutral development environ-
ment providing common APIs for software creation, abstract-
ing away from the low-level details of the hardware and operating
system. For instance, it provides cross-platform development
interfaces for accessing resources (e.g. file system, connectiv-
ity, IO/sensors) on any system and pre-built components for
common tasks—such as UI elements, networking, and data
management systems.

This so-called compatibility layer acts as a bridge between the
application and the underlying architecture, and it is at the heart
of the platform engineering strategy that is being successfully
implemented across industries to ease the developer workload
while increasing efficiency and quality, especially when working
on varied product portfolios and multiple devices.

8User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

Cross-Platform Deployment
Modern software applications run on a variety of devices. Smart-
phones, tablets, laptops, and desktops have been out already for
decades and enjoy a broad ecosystem of cross-platform appli-
cations. Today, familiar appliances that used analog interfaces
till recent times are being equipped with rich digital UIs and new
functionality stemming from digitalization.

An interesting example of software that needs to operate on
different environments is offered by so-called companion apps
that extend the capabilities of home appliances by enabling dis-
tant interaction and cloud-based services. Analogous use cas-
es stem from the industrial, medical, and automotive domains
where the same or largely similar user experiences are deployed
on devices that have distinct form factors, varying computation-
al resources, and different hardware and operating systems.

Cross-platform software development has become a necessity
across industrial verticals to ensure broad usability, extra func-
tionality, and market traction. And while this may sound like a
further challenge, with the right tools, it is an opportunity.

9User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

Clearly, re-writing code for each different target is not a viable
solution. If the aim is to code once and deploy on many platforms,
adopting a platform-agnostic framework grants the required
flexibility and resources. Minimally, this implies

•	 reduced costs—time and materials
•	 independence from hardware suppliers
•	 faster time-to-market
•	 higher quality at scale

For end users and branding, cross-platform design ensures that
a uniform user experience reaches a wide audience, strength-
ening brand identity via a consistent look-and-feel across the
entire product portfolio.

Finally, pre-defined software packaging solutions enable de-
ployment on a wide range of hardware types and operating sys-
tems, ensuring optimal performance on each target.

As the complexity of targeting multiple environments can be
tamed by using a comprehensive cross-platform UI framework,
the benefits of such an approach are vast, both in terms of creative
opportunities—as in the case of companion apps—and efficiency.

1. Foundations 2. Performance 3. Graphics 4. Workflow

2. Performance

11User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

While on the development side, the UI framework provides li-
braries and solutions for app creation on PC, on the deployment
side, it provides the UI engine running the applications on the
end-user devices, also known as runtime. A smartwatch, a digi-
tal automotive cockpit, or the display of smart-home appliances
all include an instance of the framework’s UI engine running the
app on their specific hardware and software architecture.

Considering the variety of devices and their often very limited
computational power and energy supply, it looks almost magic
that, no matter the underlying system, a single runtime engine
may control every function’s and service’s lifecycle, their inter-
action with one another, and the resource allocation for each
task. The UI engine is specifically designed to handle competing
processes with particular attention to performance.

12User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

Event-Driven Architecture
Digital devices are usually resource-constrained devices with
very limited processing power and storage capabilities. The de-
vices powering our appliances, cars, and wearables have, for in-
stance, much more limited capabilities than the powerful desktop
PCs used for home entertainment and gaming. And more in gen-
eral, with UI software, it is rather exceptional that a single ap-
plication is allowed to use all the resources available or to have
unlimited startup time—as in the gaming case. The embedded
devices used for industrial applications need to snap-boot and
have only scarce computational resources to run several func-
tions and services in parallel.

Nonetheless, the final performance of the application and the
quality of its graphics are not dictated solely by the hardware.
The UI framework offers a series of ready-made solutions to
optimize resource consumption in constrained environments,
enabling a multitude of parallel services and advanced graphics
with a low footprint.

The underlying event-driven architecture uses events to trig-
ger functionality and to communicate across decoupled ser-
vices. Applications remain idle when not in use, minimizing the
amount of memory, CPU, and GPU needed. Such on-demand
behavior frees computational resources that can be dynamically

allocated to other applications—and reduces energy consump-
tion when the supply is limited.

In addition to UI virtualization, the UI framework supports:

•	 Background loading of UI and resources
•	 Threading to handle the concurrent execution of tasks

across multiple CPU cores
•	 Memory management to automatically handle the alloca-

tion and deallocation of memory for objects
•	 Caching for images, fonts, and other resources, helping to

speed up the loading and display of these resources
•	 Optimized data structures that are more efficient than the

standard C++ data structures
•	 Compilation options including link-time optimization to

find opportunities for optimization of the overall program.

The UI framework helps developers improve the efficiency and
responsiveness of the UI by means of mechanisms that stream-
line the UI’s internal processes and reduce the memory footprint.

13User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

Profiling
While a prototype can show the application’s intended behavior
and look on a desktop PC—a sort of unconstrained environment
that abstracts over the resource needs—rarely can such an ap-
plication be ported to the actual target at this stage.

Profiling involves collecting data about how the application uses
resources such as CPU, memory, and network bandwidth and
analyzing this data to identify bottlenecks, lags, and memory
leaks. Too complex 3D models, high-density shaders, extensive
use of shader effects are frequent examples of such bottlenecks
that may prevent an application from performing steadily at the
optimal 60 frames per second. The profiler helps detect such
rendering bottlenecks but also suboptimal code, background
tasks that consume too many resources, memory leaks, unop-
timized graphics, too frequent UI updates, and other similar is-
sues that, without the right tools, would require a long time and
unnecessary effort to be detected.

When the actual target hardware is not accessible, the UI frame-
work’s emulating capabilities allow developers to examine the
app’s behavior on the target’s form factor and processing re-
sources from their PC as if it was running on the actual device.

14User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

In case the hardware is not yet agreed upon, ready, or available
(as in the case of chip shortage), the possibility to develop and
test software on PC independently from the final hardware en-
sures that production can proceed faster and steadily with the
least impact on time-to-market.

Quality Assurance

If in addition to a fluid performance, the application needs to
meet the industry standards of safety and reliability and com-
ply with the requirements set by notified bodies, the presence
of integrated quality assurance tools helps automate the test-
ing process, identify untested code, and detect deviations from
coding directives. While in general beneficial to raise the quality
and trust of the software product, such QA component becomes
essential in case of safety-critical applications and certification
thereof as, for instance, in the medical sector.

3. Graphics

1. Foundations 2. Performance 3. Graphics 4. Workflow

16User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

Graphics are an essential element of UI applications. Indeed,
what differentiates UI applications from other types of software
is the presence of a visual interface enhancing user interaction.

Visuals make software more intuitive and immediate, easier to
use and to understand. Colors, icons, and animations provide
visual cues or status updates in a non-invasive way. Charts,
graphs, or maps help display complex information and data. Ad-
vanced 3D graphics represent real-world objects and life-like
situations on the UI. And in addition to their utility, there is an
undisputed aesthetic value in the creation of visually appealing
software—good UX design and pleasant visuals attract more
users and reinforce brands.

17User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

To deliver the level of interactivity and the life-
like situations that UI apps aim to model, the UI
framework provides rich 2D and 3D tooling for
the creation of various types of visual content,
ranging from basic layout design to complex
3D scenes.

This is also why, in terms of graphics capabil-
ities, the UI framework includes so many fea-
tures typical of modern game engines, but
also many others that are relevant to deliver
high-quality graphics on a variety of devices
and for the most diverse use cases.

Real-Time Graphics

In UI applications, the images on the screen dy-
namically change based on user interaction or live
data flow. Real-time animations give feedback
to the user in a series of subtle ways that con-
tribute to making the user experience engaging
and natural. A button expanding while hovering

over it, popping up when pressed may pass al-
most as unnoticed but is an important cue of
the device’s responsivity to the user’s action.
Real-time graphics enable interactive visual-
izations of data, both in the form of 2D charts
and graphs and in that of complex 3D objects.

These types of visuals are substantially differ-
ent from the computer graphics seen in films
and video games (CGI) for the creation of char-
acters, environments, and effects, where the
level of interactivity is null or very limited and
visual elements are rendered once and for all.
On embedded devices, UI applications rely on
real-time rendering to provide a dynamic and in-
teractive user experience.

18User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

Data Binding
At the core of the possibility for the UI application to dynamically
and interactively represent the world, there is the ability to link
and sync visual properties of the UI to real objects and data: the fuel
level displayed on the car’s dashboard represents the real car’s
fuel level, the heart rate chart on a smartwatch shows that of
the user, and so forth.

Advanced data-binding mechanisms are a core UI framework’s
tool enabling such connection between UI visuals and real-world
data by simple drag-and-drop and automatic synchronization.

Another crucial and rather unique feature of the UI framework is
the ability to integrate 2D with 3D elements and have them play
harmoniously together.

19User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

The Interplay of 2D and 3D Graphics
While the UI layout is typically created by means of 2D graphics
tools enabling the easy setup of ground elements, like frames,
buttons, icons, charts, or text, there is a growing trend across
various industries to increase photorealism by including 3D
el-ements within the UI. Flat 2D elements are typically used to
represent controls and other types of abstract or symbolic in-
formation, while 3D objects represent real-world entities and
even complex situations.

2D and 3D graphics play complementary roles and provide to-
gether the right balance between performance and realism.

Where 3D graphics add an extra dimension of expressivity, 2D el-
ements are simpler to create and use and have a lower footprint.

Today, the interplay of 2D and 3D graphics has reached such a
level of quality and fluidity that complex situations can be rep-
resented in the 3D space and seamlessly accessed by means of
simple 2D controls. For these two types of graphics to play well
together, the UI framework should ensure perfect synchroniza-
tion between the 2D and 3D elements.

20User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

Immersive 3D Graphics
With 3D graphics, complex life-like situations can be quickly and
easily grasped at a glance. As a well-known example, advanced
driving assistance systems (ADAS) in automotive displays in-
creasingly include the real-time rendering of the car in its actual
driving environment. To provide drivers with a clear, blind-spot-
free view of the surrounding of the car, a 360° camera feed from
the physical car creates the 3D scene where the rendered car
lives. Real-time reflections, shadows, and other effects contrib-
ute to making the resulting 3D scene on the dashboard hardly
distinguishable from the physical car’s situation.

Similar applications that take advantage of real-time 3D graph-
ics for the creation of avatars or digital twins, often within the
space of virtual or augmented reality, are being developed across
industries. In the medical sector, 3D graphics provide interactive
visualizations of organs and tissues that can be used to aid in
diagnosis, surgical planning, and medical research. Here, diag-
nostic imagining essentially relies on hyper-realistic 3D visuals
to identify the causes of an illness or to confirm a diagnosis.

Everywhere, highly detailed and articulated 3D representations
of the world increase safety, improve efficiency, reduce costs,
and enhance the overall quality of the product or service.

Clearly, the development of such visually rich UI applications re-
quires powerful design tools for 2D and 3D graphics and ren-
dering engines capable of displaying with high fidelity and in
real time. This is why, in terms of graphics capabilities, the UI
framework includes many features typical of the most advanced
graphics engines.

21User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

Physically Based Rendering
By including a physically based rendering (PBR) pipeline, the UI
framework ensures a more accurate and realistic rendering of
materials and light that simplifies the creation of high-quali-
ty graphics. By adhering to such a standard, as specified for in-
stance in the glTF format, UI designers readily gain compatibil-
ity with general-purpose material models—like wood, leather,
rubber, metal, etc. PBR allows for more consistent and predicta-
ble results across different lighting conditions and materials re-
sulting in a reduced need for technical artists to create custom
shaders for different surface types.

As the PBR standard is increasingly popular in the 3D design
community, designers also readily get access to thousands of
3D models available online that can be used and customized ac-
cording to the UI application’s needs.

22User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

HDR Lighting
High Dynamic Range lighting allows the creation of photoreal-
istic, lifelike 3D environments that are highly detailed, vivid, and
accurate. By capturing and displaying a wider range of bright-
ness and colors than traditional pictures, HDR images provide a
basis for more accurate lighting and shading calculations in the
3D scene, resulting in more realistic and dynamic lighting effects.

Postprocessing Effects
Postprocessing effects apply before each frame is rendered
by the actual graphics hardware to improve its visual quality
or tweak the overall look and feel of the scene with little setup
time. As the quality standard is largely set by the CGI offering—
which, anyhow, is not real-time—the UI framework’s graphics
subsystem needs to include advanced algorithms to eliminate
any glitches that can reduce photorealism. For instance, an-
ti-aliasing removes from the rendering the jagged edges that
may appear when a coarse model geometry is used.

Theming
Control over the theme and overall appearance of the UI is
fundamental for ensuring a consistent look and feel of the UI
across applications and platforms. Theming can include chang-
es in colors, fonts, and icons, but also the overall restructuring
of the UI by adding or removing widgets for better adaptation to
different form factors. Such operations are essential to ensure,
for instance, consistent branding and core functionalities across
a varied product portfolio.

23User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

Embedding Game-Engine Graphics
A state-of-the-art UI framework typically supports different
types of graphics APIs for the creation of advanced 3D visuals,
such as OpenGL, OpenGL ES, Vulkan, Direct3D, and Metal. In ad-
dition, it can easily leverage content produced by game engines
by either embedding such content within a UI window or by act-
ing as middleware for the integration of the game engine’s ad-
vanced visual and physics features with standard UI services
like input management, networking, media, and even certified
safe-rendering solutions that may be otherwise lacking.

Integrating the game engine’s graphics within the UI framework
may be beneficial at various levels when graphics quality, per-
formance, safety, and cross-platform capabilities are at stake.
Thanks to its optimized resource management system, the UI
framework enables porting game-like experiences within re-
source-constrained devices and even their certification for safe-
ty-critical applications.

Instead of rendering visual content constantly at the highest
frame rate—which is the standard for standalone gaming on
PCs—the UI engine’s event-driven architecture minimizes the
CPU, GPU, and memory needed for each process. In other words,
where the game engine demands unconstrained resource us-
age for high-quality rendering and smooth gameplay of a single

application, the UI engine’s on-demand behavior ensures that
resources are used sparingly and dynamically allocated across
multiple processes based on real-time needs. While keeping the
number of UI elements being loaded, drawn, and held in memory
minimal, the platform-agnostic nature of the UI engine also en-
ables to scale the same user experience across hardware types,
with all the benefits that have been discussed. Among these,
not least, delivering compelling visuals also on low-end hard-
ware as a cost-effective solution for high-quality software.

1. Foundations 2. Performance 3. Graphics 4. Workflow

4. Workflow

25User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

There can be large variations in the result and how efficiently
this is achieved depending on how the various software tools
interact and enable teams to collaborate iteratively.

In the highly competitive modern market, a fragmented work-
flow, where tools don’t naturally interface, and teams are con-
fined in silos focusing each on one piece of code at a time is
bound to fail due to its inefficiency.

When the production process spans from UI/UX design to de-
ployment on a range of targets, through various iterations of
testing and updates, the success of the enterprise—in terms
of product quality, time to market, and cost—can be signifi-
cantly enhanced by adopting tools that promote a cohesive
working methodology.

26User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

An End-To-End Solution
The UI software creation process involves multiple stages, en-
compassing UI/UX design, hardware deployment, and iterative
development and testing. Various teams with very different
skills and competencies take part in the endeavor, and their in-
teraction is not always easy—let alone efficient.

Without adequate tools, the design and experience ported to the
app by the engineers may differ from the one originally devised
by the designers. In turn, software testing should be executed
at every iteration, at every update, and without integrated test-
ing automation tools, manual execution is time-consuming, er-
ror-prone, and limited in scope and accuracy.

Rather than relying on fragmented tools to perform one task
at a time on a need-by-need basis, the UI framework provides
dedicated solutions for each stage of the software development
process that build upon a single codebase. While providing a
cohesive and consistent environment, in terms of workflow this
breaks down silos, as UI/UX designers, 2D/3D technical artists,
software architects, developers, and testing engineers can col-
laborate on the same repository through the UI framework’s
unified tooling. This enables OEMs to establish an effective soft-
ware-first approach in which the UX is created in close connec-
tion with the software and hardware specifications.

Product
Definition

UI
Design

Architecture
Design

UI
Development

Logic
Development

Hardware
Deployment

Static Code
Analysis

Functional
Testing

Performance
Testing

Support

Product
Analysis

Update

M
anagement Quality

 Assu
ra

nc
e

Development

Des

ign

27User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

Design and Development
By sharing a common UI creation tool where the visual compo-
nent of the app is built side by side with its code, technical artists
and engineers can better understand each other’s aims and con-
straints. UI designs are automatically converted into code, and
code changes are immediately reflected on the UI’s appearance
and behavior—enabling fast error detection and rapid iterations,
while leaving no margin for misunderstanding.

The possibility to share over the web not only the design concept
but the fully working UI application allows all stakeholders to
review the appearance, test the functionality, and share feed-
back on the overall user experience.

The UI framework’s end-to-end tooling enables an integrated
working methodology that drastically reduces complexity and
efforts, with huge benefits on time to market and cost.

28User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

Automated Testing
When, in addition to design and development, the UI frame-
work’s tooling includes an automated testing suite, the highest
quality standards, up to certification for safety-critical use cas-
es, can be attained with smaller effort and cost.

Test automation increases coverage and accuracy while de-
creasing execution time and the risk of manual error. As frequent
testing is standard in the current agile software development
discipline, the possibility of scheduling extensive parallel tests
on multiple platforms quickly pays off the effort of creating au-
tomated test scripts.

Standardization and Customization
One key factor, when the product offering encompasses various
devices, models, and markets is that of standardization: creating
software for new models cannot be a re-creation from scratch
and defining standardized reusable components is essential to
port core functionalities across the full product portfolio.

The other key factor for multi-product companies is differenti-
ation, that concerns the variation of functionality and look-and-
feel across models, markets, regions, and demographic groups.

For a successful end-to-end development at scale, it is essential
to harmonize two rather opposite requirements: that of stand-
ardization or reusability on the one side—namely, avoid doing
the same thing twice—and differentiation on the other—that is,
easily customize the appearance and functionality to fit differ-
ent models, regions, locales, etc.

Such balance can be easily reached when the UI framework
components are created according to the model-view-control-
ler design pattern, namely by decoupling the appearance of the
UI from the underlying logic. While the logic defining the appli-
cations’ behavior and functionality remains, to a large extent,
invariant, the appearance of the UI elements can be easily cus-
tomized based on the specific requirements. For instance, the
connectivity and intercommunication functions can be defined
once and for all across devices. The layout and appearance of
buttons and control elements can be easily varied across mod-
els, new themes can be added at any point, and so forth.

A UI framework offering standardized building blocks for all
core components of the UI application and easy integration
with the pre-existing software stack enhances compatibility
and interoperability.

29User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

Platform Engineering
On a more general level, the UI framework enables the crea-
tion of atomic UI primitives that abstract over their context of
use and can operate across different logic workflows (and, of
course, platforms). Being each atom defined by a specific por-
tion of code, it is simple to compose them into larger molecules,
or templates, defining more complex UI elements and functions
that can be applied to various use cases and products to provide
consistent functionality. At the same time, the UI framework in-
cludes the tools to easily customize and differentiate the look-
and-feel of the components according to the design system and
UX requirements of the different models.

A UI framework enabling the creation and easy customization of
such templates allows hardcore software developers and tech-
nical artists/front-end developers to work side-by-side on the
same codebase, with major benefits in quality, efficiency, and
costs. But there is more.

Building on the idea of standardization and re-usability, plat-
form engineering aims at providing developers with a self-ser-
vice infrastructure of highly optimized ready-made components
that can be easily fetched, customized, and deployed to differ-
ent devices. As a way to reduce the developers’ cognitive load
(increased substantially with the increase in software complex-

30User Interface Design: Functionality, Tooling, and Workflow

1. Foundations 2. Performance 3. Graphics 4. Workflow

ity), such production strategy has recently been popularized for
its benefits on productivity, efficiency, quality and overall devel-
oper satisfaction. In this setup, while senior developers main-
tain the self-service platform, ensuring the availability of robust
functionality and compatibility with other components, it’s eas-
ier even for less experienced developers to build and ship high
quality products with greater efficiency.

In the platform engineering setting, the UI framework acts not
only as the source of UI content and functionality to build a UI
app, but more substantially as middleware providing the level
of abstraction and standardization needed to integrate different
systems together, for different modules to talk to each other,
for different software stacks to live on the same codebase.

Ownership
As user experience in digital devices is aimed toward a smart-
phone-like experience, also the technological trend is shifting
toward smartphone-like solutions: on the hardware side, tech-
nology is migrating toward a single board with multiple proces-
sors, while on the software side, toward a single OS covering all
use cases. This applies across industries, from consumer elec-
tronics and health care to the automotive sector, as part of the
software-first strategy being adopted by most OEMs.

This trend is motivated by the opportunity it offers for OEMs to
reduce their bill of materials, the amount of code to be maintained,
and the dependency on third-party suppliers. The possibility to
use standardized software components and the availability of
tools for their easy customization in a single UI framework is a
key enabler for succeeding in the modern, competitive market.

The key takeaway from the trend toward a platform strategy is
that by increasing ownership, OEMs can simplify their process,
reduce costs, and reinforce their brand. The adoption of a unified
UI framework whose tools encompass the end-to-end product
lifecycle enables OEMs’ emancipation from third-party suppli-
ers, with major potential benefits in terms of optimized produc-
tivity, efficiency in delivery, brand differentiation, and quality.

While our description of the UI framework’s fea-
tures and capabilities abstracts away from spe-
cific market products to focus on the must-have
of the end-to-end tooling for an effective software
development process, a quick glance at Qt offer-
ing will convince our readers that such tooling is
indeed available and can serve you as a reliable
guide in your software development journey.

Development

Qt Design Studio
Turning Visions into Functional Applications

Qt Framework
Comprehensive Libraries for Industry-grade Software

Qt Creator
Coding, Building, Testing, and Deploying on one IDE

Qt Insight
Real-time Usage Intelligence

Quality Assurance

Squish
GUI Test Automation

Coco
Code Coverage Analysis

Test Center
Test Results Management and Analysis

Axivion
Static Code Analysis and Architecture Verification

https://www.qt.io/product/ui-design-tools
https://www.qt.io/product/framework
https://www.qt.io/product/development-tools
https://www.qt.io/product/insight
https://www.qt.io/product/quality-assurance/squish
https://www.qt.io/product/quality-assurance/coco
https://www.qt.io/product/quality-assurance/test-center
https://www.qt.io/product/quality-assurance/axivion

qt.io

	Ownership
	Platform Engineering
	Standardization and Customization
	Automated Testing
	Design and Development
	An End-To-End Solution
	Embedding Game-Engine Graphics
	4. Workflow

	Theming
	Postprocessing Effects
	HDR Lighting
	Physically Based Rendering
	The Interplay of 2d and 3d Graphics
	Data binding
	Real-Time Graphics
	Quality Assurance
	3. Graphics

	Profiling
	Event-Driven Architecture
	Cross-Platform Deployment
	2. Performance

	The Middleware
	The UI Framework
	The UI Application
	1. Foundations
	Immersive 3D Graphics

