
8 things to
know about
WebAssembly
The quick guide for the basics of Qt for WebAssembly

Table of
Contents

What is Qt for
WebAssembly?

Is WebAssembly targeted
only for the web?

For which use cases is Qt
for WebAssembly useful?

What to build with
WebAssembly?

What limitations need
to be considered when
assessing the use of Qt
for WebAssembly?

How to build applications
with Qt for WebAssembly?

Where to start exploring
Qt for WebAssembly?

Which browsers are
supported in Qt for
WebAssembly?

01. 02. 03. 04.

07.05. 08.06.

WebAssembly (abbreviated Wasm) is a bytecode representation
meant to be targeted by high-level programming languages such
as C++ and to be executed in a virtual machine in a web browser.
Qt for WebAssembly lets you run Qt applications on the web.
With Qt for WebAssembly, you can distribute your application as
a web application that runs in a browser sandbox. This approach
is suitable for web-distributed applications that do not require full
access to host device capabilities.

From Qt’s perspective, WebAssembly is just another target
platform. Starting with Qt 6.4, it is an officially supported target
platform for selected, relevant modules. You can download the
binary builds on Linux, macOS, and Windows host platforms and
build your Qt applications to be run inside a web browser.

8 things to know
about WebAssembly

What is Qt for
WebAssembly?

Qt for
WebAssembly

lets you run
Qt applications

on the web

01.

The Qt WebAssembly offering is mainly geared towards the client, i.e., running in the
browser. However, there is widespread usage of WebAssembly on the server side using
technologies like wasi and wasmer.

WebAssembly can be used to implement unique use cases, which required much more
work previously. With WebAssembly, anybody can take their Qt application to run in a web
browser by recompiling it for WebAssembly as a target platform. It is also possible to reuse
parts of a Qt application when building all new web applications combining JavaScript and
WebAssembly components. This will reduce the development effort significantly. It also
might improve usability because UI elements are used across different platforms.

Furthermore, applications using WebAssembly technology run in a web browser with zero
installation. If Qt applications should be taken to mobile devices and the app store publishing

8 things to know
about WebAssembly

Is WebAssembly
targeted only for the web?

02.
is too cumbersome, then WebAssembly is a good way to bypass app stores.
One should mention that WebAssembly comes with restrictions because it runs
in a sandboxed environment in the web browser. WebAssembly does not have
access by default to the low-level hardware capabilities of the target device.
This has been done to increase the security of WebAssembly applications.
It also allows the applications to run on multiple platforms and many web
browsers without modifications.

Remote UIs for embedded devices are becoming more popular. WebAssembly
 is a great way to implement remote UIs. Reusing large parts of an existing
User Interface implementation allows embedded system makers to create
an additional remote display or even replace the in-built display altogether.

Qt for WebAssembly has several key use cases:

Taking native apps to the web by recompiling Qt C++ code to WebAssembly – often
requires working around platform limitations depending on the application and what
lower-level functionality is needed. This approach allows you to have a web story by
reusing your existing code and development resources.

Deploying apps without app stores – zero install, this could be especially interesting
in e.g. embedded products.

Sharing e.g. embedded designs with stakeholders by sharing only an URL that allows
running the design in a browser – please see DesignViewer in Qt Design Studio and
https://qt-webassembly.io/designviewer/

Embedded devices with no or limited display, occasionally needing a rich UI – reuse
your existing code, with a possibility for a companion app.

Remote control and monitoring of devices in the field - Again you have the opportunity
to reuse existing code, running on standard tablets and desktop computers.

1·

2·

3·

4·

5·

For which use
cases is Qt for
WebAssembly
useful?

03.

8 things to know
about WebAssembly

https://qt-webassembly.io/designviewer/

WebAssembly, in general, has an extensive range of potential use cases. It also has superior
performance to pure javascript, which is helpful in more complex web applications. From
the Qt perspective, there are exciting use cases listed in this guide. Additionally, there are
options for the architecture of the code as listed by webassembly.org:

Some of the most recent Qt for WebAssembly examples include:

• Entire codebase in WebAssembly
• Mainframe in WebAssembly, but the UI in JavaScript / HTML
• Reuse of existing code by targeting WebAssembly, embedded
 in a larger JavaScript / HTML application.

What to build
with WebAssembly?

04.

DesignViewer QtQuick 3D

QML Editor Slate

8 things to know
about WebAssembly

https://qt-webassembly.io/designviewer/
https://qtandeverything.blogspot.com/2021/04/qt-6-webassembly-qtquick3d-or-not-april.html?m=1&fbclid=IwAR1-K0Rg1BuLTGXCFu5WLVwLqWt1ssMEi6SFNFAs0VvhPxj0KeyCoTNSdiQ
https://www.qt.io/product/development-tools/qml-online-declarative-coding-app
https://www.qt.io/web-assembly-example-slate?hsCtaTracking=3bba596e-b49d-42b2-8846-5afc7f2d8da8%7C3dc35563-7a40-4061-b98b-b66f42959c8d
https://webassembly.org/

Building Qt applications for WebAssembly is similar to building Qt
for other platforms. You need to install an SDK (Emscripten), install
Qt (or build Qt from source), and finally, build the application. Some
differences exist. For example, Qt for WebAssembly supports fewer
modules and features than other Qt builds.

Please see our technical page for more details on building:
https://doc.qt.io/qt-6/wasm.html

8 things to know
about WebAssembly

How to build
applications
with Qt for
WebAssembly?

05.

https://doc.qt.io/qt-6/wasm.html

Desktop
Qt for WebAssembly is developed and tested on the following browsers:
• Chrome
• Firefox
• Safari
• Edge

Qt should run if the browser supports WebAssembly. Qt has a fixed WebGL requirement,
even if the application does not use hardware-accelerated graphics. Browsers that support
WebAssembly often support WebGL, though some browsers blacklist older or unsupported
GPUs. s/qtloader.js provides APIs to check if WebGL is available.

Which browsers are
supported in Qt for
WebAssembly?

06.

8 things to know
about WebAssembly

Qt does not make direct use of operating system features, and it makes no
difference if, for example, FireFox runs on Windows or macOS. Qt does use some
operating system adaptations, for example for ctrl/cmd key handling on macOS.
WebAssembly support in browsers is evolving rapidly. We currently recommend
using Chrome or Firefox for the best possible experience.

Mobile
Qt for WebAssembly applications runs on mobile browsers such as mobile Safari
and Android Chrome.

What limitations
need to be
considered when
assessing the
use of Qt for
WebAssembly?

07.

8 things to know
about WebAssembly

There are some limitations due to the nature of WebAssembly technology, utilizing
the Javascript sandbox for security. The most notable things to take into account are:

• The use of multithreading – needs to be enabled separately and is still experimental
 in WebAssembly. Additionally, multithreading requires browser support for
 SharedArrayBuffer. See caniuse sharedarraybuffer for the current supported status.

• SIMD performance enhancement – needs to be enabled separately on a need basis.

• Networking – WebSockets are the basic mechanism, although TCP/UDP sockets can
 also be used with limitations. HTTP requests can also be used to the web page origin
 server or to a server that supports CORS. This includes XMLHttpRequest from QML.

• Local file access – The usual dialogs don’t work on WASM. Instantiating and running
 a QFileDialog will display the virtual filesystem instead of the user’s real filesystem.

• Clipboard access – some differences due to the web sandbox. In general, clipboard
 access requires user permission, which can be obtained by handling an input event
 (e.g., CTRL+c) or using the Clipboard API. Browsers that support the Clipboard API are
 preferred. Note that a requirement for this API is that the web page is served over
 a secure connection (e.g., https) and that some browsers may require changing
 configuration flags.

• Debugging and profiling - Wasm debugging is done on the browser javascript console.
 Debugging applications on Wasm directly within Qt Creator is not possible.

• Fonts – only a few fonts are supported by default, but the app can enhance this.

For a full list please see our documentation:
https://doc.qt.io/qt-6/wasm.html

Browsers may also not support all the latest features,
and some APIs are currently browser-specific.

https://doc.qt.io/qt-6/wasm.html

Our documentation page could be a good starting point for Qt-related matters:
https://doc.qt.io/qt-6/wasm.html

Qt WebAssembly demos:
https://www.qt.io/qt-examples-for-webassembly

Generic information about WebAssembly:
https://webassembly.org/

Where to start exploring
Qt for WebAssembly?

08.

8 things to know
about WebAssembly

https://doc.qt.io/qt-6/wasm.html
https://www.qt.io/qt-examples-for-webassembly
https://webassembly.org/

Copyright © 2022 The Qt Company. All Rights Reserved.

About The Qt Company
Qt Group (Nasdaq Helsinki: QTCOM) is a global software company with a strong
presence in more than 70 industries and is the leading independent technology
behind millions of devices and applications. Qt is used by major global companies
and developers worldwide, and the technology enables its customers to deliver
exceptional user experiences and advance their digital transformation initiatives.

www.qt.io

https://www.qt.io

